Meta-regression models describing the effects of essential oils and added lactic acid bacteria on L. monocytogenes inactivation in cheese

Beatriz Nunes Silva, Vasco Cadavez, José António Teixeira, Ursula Gonzales-Barron

19th September 2019

Cofinanciado por:

BRAGANCA

MOTIVATION

- L. monocytogenes (LM) has been described as a prevalent foodborne pathogen in goat (12.8%) and sheep (3.61%) milk cheeses (Gonzales-Barron et al., 2017)
- Soft and semi-soft cheeses sampled at retail: level of LM contamination up to 5% (EFSA report 2017)
- In faulty fermentations, pathogens can survive and even grow during the brining and ripening stages

MOTIVATION

- Biopreservatives have been proposed as hurdles to increase microbiological safety and stability of cheeses:
 - plant-based antimicrobials (essential oils, plant extracts)
 - ✓ bacteriocinogenic starter cultures
- Meta-regression models can be used to understand
 LM growth, allowing optimisation of hurdles that provide
 long term stability and safety to cheeses

OBJECTIVES

To summarise the effectiveness of (i) lactic acid bacteria (LAB) and

(ii) essential oils (EO) on *L. monocytogenes* inactivation in cheese

To evaluate other affecting factors and possible interactions

METHODOLOGY

Systematic literature search Wodelling in R Studio

24 studies, N = 429

Mixed-effects linear models with weights

Exposure time as nested fixed effects in application type

EO meta-regression model

23 studies, N = 754

Mixed-effects linear models with weights

• <u>Exposure time</u> and <u>antimicrobial</u> <u>concentration</u> as nested fixed effects in <u>application type</u>

RESULTS

(i) LAB meta-regression model

- Significant impact on LM inactivation in cheese:
 - \checkmark application type (p<.0001)
 - ✓ pathogen inoculum level (p=0.0007)
 - \checkmark storage temperature (p=0.001)
 - \checkmark application type / exposure time (p<.0001)
 - \checkmark LAB concentration showed no significant effect (p=0.317)

SQRT Reduction

RESULTS

(i) EO meta-regression model

- Significant impact on LM inactivation in cheese:
- ✓ application type (p<.0001)
- ✓ storage temperature (p=0.001)
- ✓ application type / exposure time (p<.0001)
- ✓ application type / concentration applied (p<.0001)
- Pathogen inoculum level showed no significant effect (p=0.526)

Predicted values

SQRT Reduction

RESULTS

EO	Ν	RE
Black cumin seed	35	-0.652
Zataria multiflora boiss.	56	-0.406
Pink pepper	38	-0.391
Thyme	124	-0.196
Sage	12	-0.143
Rosemary	16	-0.141
Lemon balm	12	-0.105
Pennyroyal	24	-0.041
Basil	36	-0.036
Hogweed	15	-0.029
Tarragon	24	-0.015
Clove	68	0.028
Oregano	85	0.050
Mint	83	0.147
Salvia	34	0.471
Cinnamon	47	0.595
Bay	45	0.862

CONCLUSIONS

- Meta-analytical regression models were built, summarising the effects of LAB and EO on LM log reduction
- Antimicrobials' effectiveness depends on storage temperature, exposure time, [EO], application type
 - for the same exposure time, application in <u>milk</u> or <u>surface</u> cause greater log reduction (LAB model)
 - for the same exposure time, application in <u>cheese</u> causes greater log reduction; application in <u>milk</u> causes the lowest log reduction (EO model)
- Insight on the most effective EO for LM control in (soft) cheeses

Through **meta-regression modelling** it is possible to optimise manufacturing processes and the use of hurdles

ightarrow ensure microbial stability and safety of cheeses \leftarrow

ACKNOWLEDGEMENTS

BNS wishes to acknowledge the financial support provided by the

Portuguese Foundation for Science and Technology (FCT)

through the PhD grant SFRH/BD/137801/2018.

Cofinanciado por:

Fundo Social Europeu

Meta-regression models describing the effects of essential oils and added lactic acid bacteria on *L. monocytogenes* inactivation in cheese

beatrizsilva@ceb.uminho.pt

