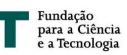
Meta-regression models describing the effects of added lactic acid bacteria on pathogen inactivation in milk and cheese

Beatriz Nunes Silva, Vasco Cadavez, José António Teixeira, Ursula Gonzales-Barron


FOODSIM 2020

Cofinanciado por:

MOTIVATION

 Various biopreservatives have been proposed as hurdles to increase microbiological safety of food products

Lactic acid bacteria (LAB)

 <u>B. cereus, C. perfringens, L. monocytogenes, L. innocua, S.</u> <u>aureus, and E. coli</u> can be found in milk and dairy products, such as fermented milk and cheese

MOTIVATION

- Available literature describing the effect of this biopreservation method against several bacteria
- Meta-regression models can be used to understand pathogen growth, allowing optimisation of hurdles that provide long term stability and safety to milk and cheeses

OBJECTIVES

To collect available literature on pathogen inactivation in milk and cheese containing added LAB

- B. cereus

- L. monocytogenes and L. innocua - E. coli

- C. perfringens

- S. aureus

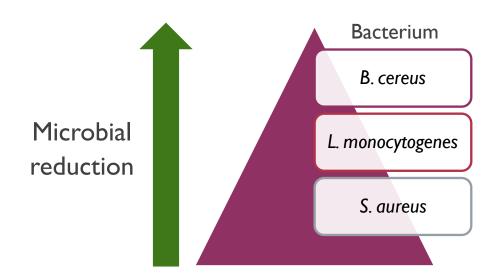
To harmonise the retrieved data by constructing two separate meta-regression models that summarise LAB effectiveness

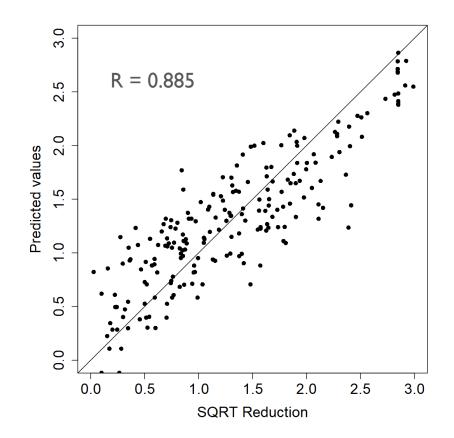
METHODOLOGY

Mixed-effects linear models with weights

atic	(i) Milk	(ii) Cheese
ire h	Pathogens: B. cereus, L. monocytogenes, S. aureus	Pathogens: B. cereus, C. perfringens, L. innocua, E. coli
	Tested variables: - Antimicrobial concentration (C) - $\sqrt{Exposure time} (\sqrt{t})$	 Tested variables: Application type (App) Inoculum concentration (Inoc) √Exposure time (√t)
g in dio ^{age)}	$\sqrt{R_{ik}} = \beta_{0i} + \beta_1 C + (\beta_2 + \beta_{3k}) \times \sqrt{t} + \varepsilon_{ik}$	$\sqrt{R_{ikm}} = \beta_{0i} + \beta_{1m}App_m + \beta_2Inoc + (\beta_3 + \beta_{4k}) \times \sqrt{t} + \varepsilon_{ikm}$

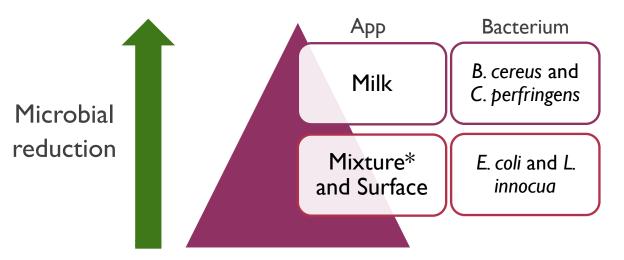
Response variable: $\sqrt{}$ Log Reduction (log CFU/ml or /g)

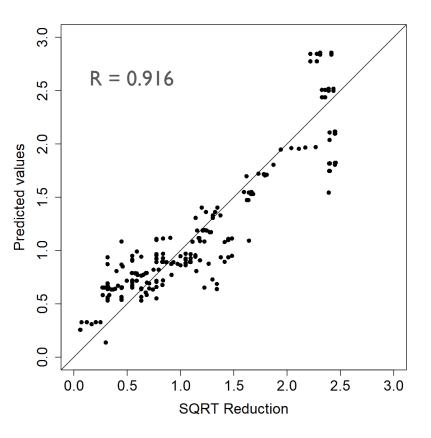

RESULTS


Log reduction data

Retrieved:		Milk	Cheese	
20 studies = 426 observations on log	Bacterium	<i>B. cereus</i> : 48 <i>L. monocytogenes</i> : 120 <i>S. aureus</i> : 48	B. cereus: 58 C. perfringens: 39 L. innocua: 25 E. coli: 88	
reduction data	Application type	Milk: 216	Milk: 34 Surface: 78 Mixture: 98	
	Inoculum level (log CFU/ml or /g)		[2, 4[: 96 [4, 6]: 114	
	Antimicrobial conc. (log CFU/ml)	[2.5, 5[: 3 [5, 7.5[: 192 [7.5, 9.6]: 21		
	Exposure time (days)	[0, 3[: 174 [3,6[: 32 [6, 10]: 10	[0, 20[: 106 [20, 40[: 56 [40, 60]: 48	

RESULTS


- (i) Milk meta-regression model
- Significant impact on pathogen inactivation:
 - ✓ Antimicrobial concentration (p=0.001)
 - ✓ $\sqrt{\text{Exposure time (p<.0001)}}$
 - ✓ $\sqrt{\text{Exposure time * Bacterium (p<.0001)}}$



RESULTS

- (ii) Cheese meta-regression model
- Significant impact on pathogen inactivation:
 - ✓ $\sqrt{\text{Exposure time (p<.0001)}}$
 - ✓ Application type (p<.0001)
 - $\checkmark \sqrt{Exposure time * Bacterium (p<.0001)}$
 - ✓ Inoculum concentration (p<.0001)

CONCLUSIONS

- Antimicrobials' effectiveness depends on <u>exposure time</u>, <u>application type</u>, <u>antimicrobial concentration</u>...
- Insight on the interaction between exposure time and bacterium
 - distinct inhibitory effect on different pathogens, for the same exposure time
- LAB incorporation in cheese mixture is not an adequate practice, as this method may underestimate the inhibitory effects LAB
- Other sources of variability: type of milk (raw vs. pasteurised), fermentation/ripening temperatures, application of selected single LAB strains vs. the use of LAB-cocktails, etc.
- LAB against Gram(+) and Gram(-) bacteria: further research needed

CONCLUSIONS

Meta-regression modelling can be used for the

experimental design of challenge tests and

to optimise manufacturing processes and the use of hurdles!

 \rightarrow ensure microbial safety of cheeses \leftarrow

ACKNOWLEDGEMENTS

BNS wishes to acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (FCT) through the PhD grant SFRH/BD/137801/2018.

The authors are grateful to EU PRIMA programme and the Portuguese Foundation for Science and Technology (FCT) for funding the ArtiSane Food project (PRIMA/0001/2018).

Thank you for your attention!

🔀 beatrizsilva@ceb.uminho.pt

