V. Cadavez, U. Gonzales-Barron, D. Félix-Oliveira, S. Coelho-Fernandes, G. Santos-Rodrigues, J. M. Lorenzo, R. B. Piedra

FOODSIM'2020 April 5-9, University of Leuven, Ghent, Belgium

- 2 Methodology
- *3* Results and discussion

4 Conclusions

Introduction

Introduction

Sheep production system

- Sheep farming is an activity of high economic importance
- In Portugal, sheep and goat meat production constitutes 2.8% of the country's meat production
- Level of self-sufficiency of 82%
- Based on the use of natural pastures and agricultural residues

Meat quality

- Enhancing the quality of meat of autochthonous breeds could contribute to
 - increasing the profitability of these production systems
 - preservation of the rural world and its diversity
 - ensuring the conservation of endangered breeds
 - improving the living standards of the sheep farmers that remain in rural areas

Meat quality

- Multifactorial concept: factors that are intrinsic and extrinsic to the animal
- During maturation, microbial deterioration takes place
- vacuum packaging retards microbial deterioration
 - The extent of retardation depends on chilling system/profile
 - initial microbial contamination
 - physicochemical or intrinsic properties of meat

Objectives

- to evaluate the evolution of spoilage indicator microorganisms in refrigerated vacuum-packed lamb meat
- to elucidate any interrelationship between meat's intrinsic properties and microbial growth

- Methodology

Methodology

- Methodology

Lamb rearing and feeding

Mediterranean bioregion

- Bragança Portugal
- Churra Galega Bragançana (CGB): 30 lambs
- Atlantic bioregion
 - Ponte de Lima Portugal
 - Bordaleira de Entre Douro e Minho (BEDM): 30 lambs

-Methodology

Lamb rearing and feeding

Semi-intensive production system

- Feeding was based on grazing on natural pastures
- Lambs had access to meadow hay, and supplemented with protein and mineral-rich concentrates
- Lambs had access to water ad libitum

-Methodology

Preparation of meat samples

- Lambs were slaughtered at four months old
- Carcasses were chilled at 4 ^oC for 24 hours
- Left half of the Longissimus dorsi muscle
 - \blacksquare Vacuum packed stored at $4\pm0.5^{\rm o}{\rm C}$ for 3, 9 or 15 days
- Right half of the *Longissimus dorsi* muscle was kept for the physicochemical analyses

- Methodology

Microbiological and physicochemical analyses

- Microbial counts: 3, 9 or 15 days
 - total viable counts
 - psychrotrophic bacteria
 - lactic acid bacteria
 - Pseudomonas spp.
- Meat intrinsic properties
 - pH, aw, Proximate composition (dry matter, fat, protein and ash content)

-Methodology

Data analysis - Mixed-effects models

$$\begin{split} Y_{rj} &= \beta_{0j} + \beta_{1r} + \beta_2 Day + \beta_3 X Day + \beta_4 Day^2 + \epsilon_{rj} \\ \beta_{0j} &= \beta_0 + v_j \end{split}$$

- Y_{rj} is the microbial concentration in the meat sample from lamb j of breed r
- β_{0i} is the model intercept affected by random shifts v_i caused by the different lambs j
- β_{1r} is the fixed effect of lamb breed
- β₂ the linear effect of maturation time
- β₃ assesses the interaction between the maturation time and meat intrinsic property X
- $\beta_4 Day^2$ was added given its significance in all models
- The models were adjusted in the R software

Results and discussion

Results and discussion

Results and discussion

Evolution of Mesophiles

Table 1: Effects of Initial Intrinsic Factors of Meat on the Concentration of **Mesophilic Bacteria** in Refrigerated Vacuum-Packed Meat as Quantified by Six Separate Linear Mixed Models

Model	Term	Estimate (SE)	F (p-value)
pH	pH × Day	0.592 (0.209)	7.951 (0.006)
Moisture (%)	Moisture × Day	0.125 (0.023)	28.97 (<.0001)
Fat (%db)	Fat × Day	-0.066 (0.012)	33.30 (<.0001)

Results and discussion

Evolution of Mesophiles

Results and discussion

Evolution of LAB

Table 2: Effects of Initial Intrinsic Factors of Meat on the Concentration of Lactic Acid Bacteria in Refrigerated Vacuum-Packed Meat as Quantified by Six Separate Linear Mixed Models

Model	Term	Estimate (SE)	F (p-value)
pH	pH × Day	0.633 (0.018)	12.24 (0.001)
Moisture (%)	Moisture × Day	0.074 (0.021)	12.23 (<.0001)
Fat (%db)	Fat × Day	-0.044 (0.010)	17.84 (<.0001)

Results and discussion

Evolution of LAB

Results and discussion

Evolution of Pseudomonas

Table 3: Effects of Initial Intrinsic Factors of Meat on the Concentration of **Pseudomonas pp.** in Refrigerated Vacuum-Packed Meat as Quantified by Six Separate Linear Mixed Models

Model	Term	Estimate (SE)	F (p-value)
pH	$\begin{array}{l} pH\timesDay\\ Moisture\timesDay\\ Fat\timesDay \end{array}$	0.533 (0.270)	3.795 (0.050)
Moisture (%)		0.143 (0.031)	21.00 (<.0001)
Fat (%db)		-0.073 (0.015)	22.01 (<.0001)

Results and discussion

Evolution of Pseudomonas

Results and discussion

Evolution of Psychrotrophic bacteria

Table 4: Effects of Initial Intrinsic Factors of Meat on the Concentration of **Psychrotrophic Bacteria** in Refrigerated Vacuum-Packed Meat as Quantified by Six Separate Linear Mixed Models

Model	Term	Estimate (SE)	F (p-value)
pH	$\begin{array}{l} pH\timesDay\\ Moisture\timesDay\\ Fat\timesDay \end{array}$	0.741 (0.282)	6.893 (0.010)
Moisture (%)		0.175 (0.031)	30.76 (<.0001)
Fat (%db)		-0.091 (0.016)	34.51 (<.0001)

Results and discussion

Evolution of Psychrotrophic bacteria

Results and discussion

Meat pH by breed

- Conclusions

Conclusions

Conclusions

- Populations of spoilage bacterial groups were higher in vacuum-packed lamb meat with higher ultimate pH
- A high ultimate pH was demonstrated to increase the rate of microbial deterioration
- Lamb meat samples with higher total fat content tended to have slower microbial spoilage
- In order to extend the shelf-life of lamb meat
 - Pre-slaughter animal handling Reduce stress
 - Feeding management to improve energy reserves Lactic acid

-Conclusions

Acknowledgments

- The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019).
- Dr. Gonzales-Barron acknowledges the national funding by FCT, P.I., through the Institutional Scientific Employment Programme contract.

-Conclusions

The End

Obrigado pela atenção!

Thanks for listening!

