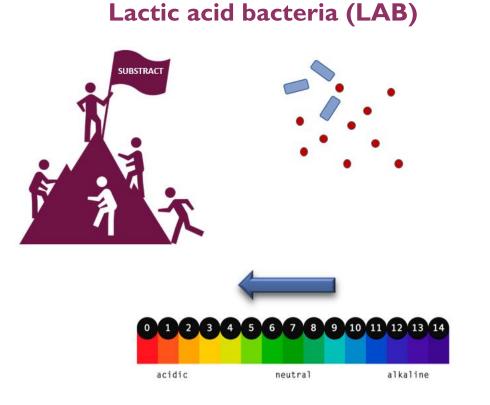
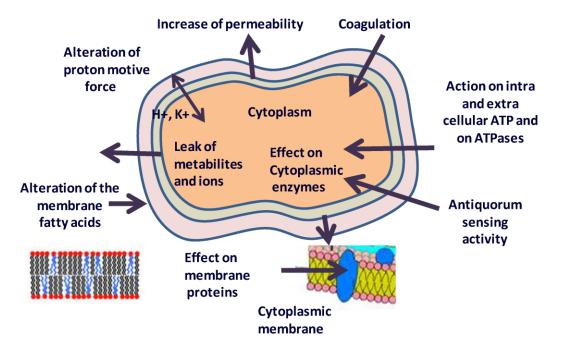

Meta-regression models describing the effects of essential oils and added lactic acid bacteria on S. aureus inactivation in cheese

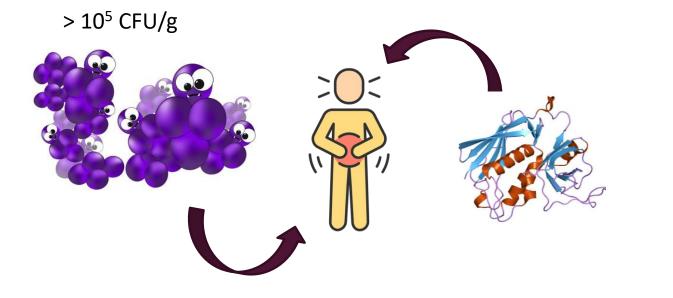
Beatriz Nunes Silva, Vasco A.P. Cadavez, José António Teixeira, Ursula Gonzales-Barron


Cofinanciado por:



MOTIVATION

Biopreservatives have been proposed as hurdles to increase microbiological safety of food products


Essential oils (EO)

Adapted from Nazzaro et al., 2013

MOTIVATION

- Cheeses: non-satisfactory results in terms of pathogen contamination at retail level (EFSA and ECDC, 2018)
- S. aureus can be found in milk and dairy products, such as fermented milk and cheese

Important

contamination issue!

MOTIVATION

- Available literature describing the effects of these biopreservation methods against several bacteria
- Meta-analysis and meta-regression models can be useful to understand pathogen growth, allowing optimisation of hurdles that provide long term stability and safety to cheeses

OBJECTIVES

To collect available literature on S. aureus inactivation in cheese containing added LAB and EOs

To harmonise the retrieved data by constructing two separate meta-regression models that summarise LAB and EOs effectiveness

METHODOLOGY

Systematic

literature search

Modelling in Studio (nlme package)

Mixed-effects linear models with weights

Population: cheeses with added EOs / LAB; Measured outcome: S. aureus mean log reduction

(i) Essential oils

Tested variables:

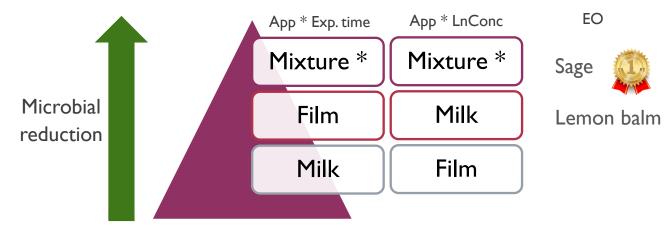
- Application type
- Storage temperature
- Application type \times exposure time
- Inoculum level
- Application type \times LnConcentration
- $\sqrt{R_{ik}} = (\beta_0 + u_i) + \beta_{1k}App_k + \beta_{2k}\{App_k \times t\} + (\beta_{3k} + v_i)\{App_k \times LnC\} + \beta_4T + \beta_5Inoc + \varepsilon_{ik}$

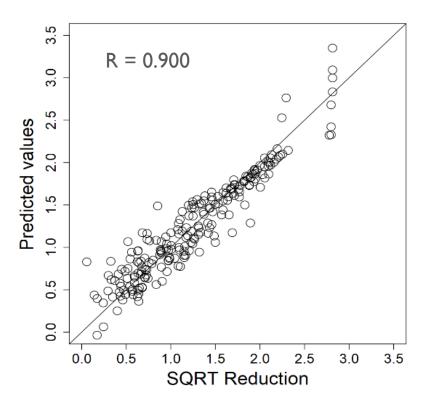
(ii) Lactic acid bacteria

Tested variables:

- Application type -
- Application type \times exposure time

 $\sqrt{R_{ik}} = (\beta_0 + u_i) + \beta_{1k}App_k + \beta_{2k}\{App_k \times t\} + \varepsilon_{ikm}$

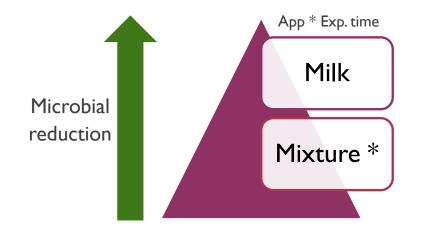

Response variable: $\sqrt{\log Reduction}$ (log CFU/ml or /g)

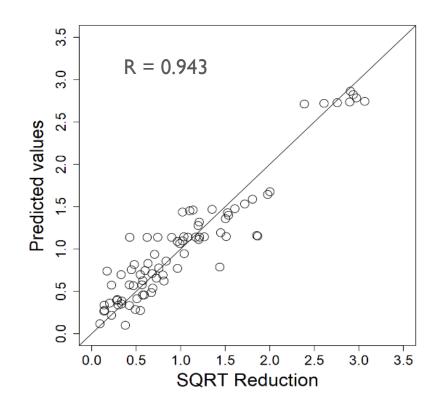

		Log reduction data		
		Levels	EOs (11 studies, N= 218)	LAB (11 studies, N= 81)
	Application type	Mixture Film Milk	58 83 77	11 0 70
	Exposure time (days)	[0, 30[[30, 60[[60, 75]	178 29 11	68 10 3
	Storage temperature (°C)	[4, 15[[15, 35]	210 8	70 11
	S. aureus inoculum level (log CFU/g or log CFU/ml)	[1.5, 3.5[[3.5, 5.5[[5.5, 8]	109 27 82	27 24 30
	Antimicrobial concentration (log CFU/g, log CFU/ml, %v/v or %w/w)	[5×10 ⁻³ , 1.5[[1.5, 4.5[[4.5, 7.5[[7.5, 10]	168 50 0 0	38 0 4 39

RESULTS

- (i) EOs meta-regression model
- Significant impact on pathogen inactivation:
 - ✓ Application type (p<.0001)
 - ✓ Application type * Exposure time (p<.0001)</p>
 - ✓ Application type * Antimicrobial Conc. (p<.0001)
 - ✓ Inoculum level (p=0.019): negative association

Storage temperature (p=0.246)


Heterogeneity analysis: > 95%


RESULTS

- (i) LAB meta-regression model
- Significant impact on pathogen inactivation:

Application type (p=0.091)

✓ Application type * Exposure time (p=0.040)

Heterogeneity analysis: ~12 %

CONCLUSIONS

- Antimicrobials' effectiveness depends on <u>exposure time</u>, <u>application type</u>, <u>antimicrobial concentration</u>...
- Insight on interactions between variables
- EO-embedded films lead to faster S. aureus inactivation
- Incorporation in cheese mixture is not an adequate practice
- Other sources of variability: type of milk, fermentation/ripening temperatures, single LAB strains vs. LABcocktails, ...
- Effect of pathogen inoculum size: further research needed

CONCLUSIONS

Meta-regression modelling can be used for the

experimental design of challenge tests and

to optimise manufacturing processes and the use of biopreservatives!

 \rightarrow ensure microbial safety of cheeses \leftarrow

ACKNOWLEDGEMENTS

BNS wishes to acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (FCT) through the PhD grant SFRH/BD/137801/2018.

The authors are grateful to EU PRIMA programme and the Portuguese Foundation for Science and Technology (FCT) for funding the ArtiSane Food project (PRIMA/0001/2018).

Thank you for your attention!

🔀 beatrizsilva@ceb.uminho.pt

