

Instrumentação Eletrónica e Medidas

Engenharia Eletrotécnica e de Computadores

Primeira Chamada – 4 de fevereiro de 2023

Duração da prova: 2 horas (cotação no fim de cada questão)

1) Considere o seguinte microamperímetro graduado numa escala de corrente elétrica entre 0 e 5 assim como as respetivas grandezas metrológicas:

Temperatura de operação	-20 a 50 ºC	
Corrente de fim-de-escala	te de fim-de-escala 100 uA	
Humidade relativa	<85%	
Resistência interna	1kΩ	

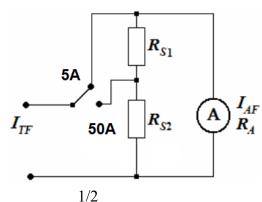
a) O que representa o índice de classe de um aparelho de medida? Para este caso concreto, qual o valor do índice de classe? [2]

R:

O índice de classe representa a razão entre o valor absoluto máximo do erro e o valor de fim-de-escala. Normalmente o fabricante apresenta, impresso no quadro, o valor do índice de classe que, para o presente caso, se pode perceber que tem o valor igual a 5 (cinco).

b) Com base neste aparelho indicador, projete um amperímetro, na configuração Ayrton, com duas escalas de medidas: 5A e 50A. (deve apresentar o esquema e as equações que permitam obter o valor dos componentes eletrónicos necessários.) [4]
R:

A configuração Ayrton foi discutida no decorrer das aulas e pode ser observada no slide 24 da Parte II (instrumentação analógica). Neste caso, havendo apenas duas escalas, o amperímetro toma a seguinte forma:



Para a escala de 5A

$$I_{A} = \frac{R_{S1} + R_{S2}}{R_{S1} + R_{S2} + R_{A}} \times I_{TF}$$

Como $R_A=1k\Omega$ e forçando a que quando $I_{TF}=5A \Rightarrow I_A=I_{AF}=100\times 10^{-6}A$, a equação anterior pode escrever-se como:

$$100 \times 10^{-6} = \frac{R_{S1} + R_{S2}}{R_{S1} + R_{S2} + 1000} \times 5$$

Da mesma forma, para a escala de 50A

$$I_{A} = \frac{R_{S2}}{R_{S1} + R_{S2} + R_{A}} \times I_{TF}$$

E logo:

$$100 \times 10^{-6} = \frac{R_{S2}}{R_{S1} + R_{S2} + 1000} \times 50$$

2) Na figura que se segue apresenta-se a tabela de calibração de um LVDT produzido pela empresa AMETEK.

Position (mm)	Output (V)	Error (% FSO)
0.000	0.0031	0.031
1.000	1.0022	0.022
2.000	2.0029	0.029
3.000	3.0027	0.027
4.000	4.0053	0.053
5.000	5.0065	0.065
6.000	5.9987	-0.013
7.000	7.0027	0.027
8.000	7.9987	-0.013
9.000	8.9972	-0.028
10.000	9.9976	-0.024

a) Explique o princípio de funcionamento do LVDT indicando de que forma a informação relativa ao deslocamento do núcleo pode ser obtida a partir da forma de onda da tensão à saída. [2]

R:

Ler páginas 49 a 52 da sebenta http://www.ipb.pt/~jpcoelho/downloads/SeA .pdf

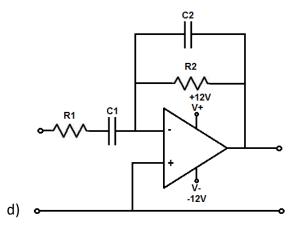
b) Estime o valor da sensibilidade do sensor considerando os limites da gama de medida (o valor do erro apresentado na tabela é relativo ao valor de fim-de-escala (FSO)). [2]

R:

Para este caso pretende-se determinar a sensibilidade do sensor relativamente aos seus extremos de medição. Deste modo, e com base na tabela de calibração apresentada no exercício,

$$S = \frac{\Delta V_{out}}{\Delta d_{in}} = \frac{9.9976 - 0.0031}{10} \approx 1V / mm$$

c) Uma das etapas do circuito de condicionamento de sinal envolve um filtro ativo como o que se mostra em baixo onde R1 é 1/10 de R2 e C2 é 1/10 de C1.



Obtenha a sua função de transferência. [4]

R: $V_{i}(t)$ $I_{2}(t)$ R_{2} $V_{i}(t)$ $V_{i}(t)$ $V_{i}(t)$ $V_{i}(t)$ $V_{i}(t)$

Como de costume, considera-se o amplificador operacional como ideal. Ou seja, para além das condições relacionadas com o seu ganho de malha aberta ou largura de banda, admite-se que a impedância de entrada é infinita e as correntes de polarização são nulas. Deste modo,

$$I_1 = I_2 + I_3 \tag{1.1}$$

Onde,

$$I_{1}(t) = \frac{V_{i}(t) - V_{C_{1}}(t)}{R_{1}}$$
(1.2)

e a queda de tensão aos terminais do condensador C1 pode ser escrita como:

$$V_{C}(t) = \frac{1}{C_{1}} \int_{-\infty}^{t} I_{1}(\tau) d\tau$$
 (1.3)

Desta forma, obtém-se:

$$I_{1}(t) = \frac{1}{R_{1}} V_{i}(t) - \frac{1}{R_{1} C_{1}} \int_{-\infty}^{t} I_{1}(\tau) d\tau$$
 (1.4)

ou, no domínio da frequência através da aplicação da transformada de Laplace (considerando nulas as condições iniciais)

$$I_1(s) = \frac{1}{R_1} V_i(s) - \frac{1}{sR_1C_1} I_1(s)$$
 (1.5)

Que resulta em:

$$I_1(s) = \frac{sC_1}{sR,C_1 + 1}V_i(s)$$
 (1.6)

Por outro lado,

$$I_2(t) = -C_2 \frac{dV_o(t)}{dt} \quad \stackrel{L}{\rightleftharpoons} \quad I_2(s) = -C_2 s V_o(s)$$
 (1.7)

e,

$$I_3(t) = -\frac{V_o(t)}{R_2} \quad \stackrel{L}{\rightleftharpoons} \quad I_3(s) = -\frac{V_o(s)}{R_2}$$
 (1.8)

Com base na equação (1.1), e atendendo à linearidade da transformada de Laplace, pode escrever-se:

$$I_1(t) = I_2(t) + I_3(t) \stackrel{L}{\rightleftharpoons} I_1(s) = I_2(s) + I_3(s)$$
 (1.9)

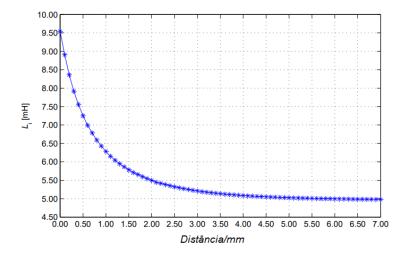
Ou seja,

$$\frac{sC_1}{sR_1C_1 + 1}V_i(s) = -C_2sV_o(s) - \frac{V_o(s)}{R_2}$$
 (1.10)

O que leva à seguinte função de transferência:

$$\frac{V_o(s)}{V_i(s)} = -\frac{sR_2C_1}{\left(sR_1C_1 + 1\right)\left(sR_2C_2 + 1\right)}$$
(1.11)

3) Um sensor, utilizado para medir a proximidade de um objeto ferromagnético, é do tipo indutivo e possui a curva de calibração ilustrada na seguinte figura:



a) Considerando que a distância a medir é sempre inferior a 0.5mm, obtenha uma expressão algébrica aproximada entre a auto-indutância L_1 e a distância. [2]

R

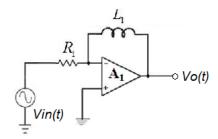
Aproximando a curva de calibração a uma reta, dentro dessa gama dinâmica de funcionamento, resulta em:

$$L_1 - 9.5 = -\frac{9.5 - 7}{0.5} \cdot D \tag{2.1}$$

E finalmente,

$$L_1[mH] = -5D[mm] + 9.5$$
 (2.2)

b) O condicionamento de sinal deste sensor é feito recorrendo ao circuito apresentado em baixo onde $V_{in}(t)=V_{p}\sin\left(\omega t\right)$. Obtenha a expressão de $V_{0}(t)$ em função do valor de L_{1} . [4]



R:

Considerando o AMPOP ideal, a relação entre $V_o(t)$ e $V_{in}(t)$ é:

$$V_0(t) = -\frac{L_1}{R_1} \frac{d}{dt} V_{in}(t)$$
 (2.3)

Admitindo que $V_{in}(t) = V_p \sin(\omega t)$ então,

$$V_0(t) = -\omega V_p \frac{L_1}{R_1} \cos(\omega t)$$
 (2.4)

Como V_p , ω e R_1 são constantes, $V_o(t)$ será um sinal sinusoidal modulado em amplitude pelo valor da indutância L_1 .

FIM DA PROVA