

SISTEMAS DIGITAIS

Licenciatura em Engenharia Eletrotécnica Licenciatura em Engenharia Informática

Exame (1ª Chamada) – 24 de janeiro de 2019

- · Apenas é permitido ter em cima da mesa de exame os enunciados e folhas entregues pelo docente.
- · A cotação das perguntas encontra-se indicada, no fim das mesmas, entre parêntesis retos.
- · O aluno detetado a plagiar verá o seu exame anulado e poderá incorrer em processo disciplinar.

Duração da prova: 1 hora e $\frac{1}{2}$.

1- O 74LS112 é um circuito integrado da família TTL que contém dois flip-flop's JK ativos à transição descendente com entradas de CLEAR e PRESET assíncronas. Explique como essas duas entradas condicionam o funcionamento do flip-flop indicando o significado destas serem assíncronas e como isso se reflete no funcionamento do flip-flop e no projeto de contadores assíncronos. [3]

R:

No 74LS112, um circuito integrado frequentemente utilizado nos trabalhos laboratoriais, possui, no mesmo encapsulamento DIP16, dois flip-flops JK independentes, ativos à transição descendente, com entradas de clear e preset assíncronas e ativas ao valor lógico baixo. Estas últimas duas entradas, sendo assíncronas, significa que quando ativadas o comportamento do flip-flop é alterado independentemente do sinal de clock. Ou seja, quando se coloca a entrada clear = 0, a saída Q do flip-flop correspondente é forçada a ser zero independentemente do estado do sinal de clock. Por outro lado, se preset=0, a saída Q do flip-flop é forçada a ir a 1. (mais detalhes acerca do funcionamento os flip-flop's podem ser obtidos pela análise das folhas de dados do componente disponível em 74LS112). Dado que as entradas de clear e preset são assíncronas, ao contrário das entradas J e K, o projeto de um contador assíncrono requer a utilização de um estado "intermédio" no caso de ser necessário alterar a normal sequencia de contagem do contador. Por exemplo, um contador assíncrono de 2 bits para contar pelos valores 1,2,3,1,... requer que, ao chegar a 3, o estado seguinte seja O e a alteração das entradas de clear e preset serão atualizadas nesse estado "intermédio".

2- Considere a seguinte tabela de verdades:

Α	В	С	D	F(A,B,C,D)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

a) Obtenha a forma canónica conjuntiva desta tabela de verdades e mostre, recorrendo ao mapa de Karnaugh, que a forma canónica coincide com a forma mais simples. [2] R:

A obtenção da forma canónica conjuntiva a partir de uma tabela de verdades passa por escolher, na tabela de verdades, todos os maxterm. Ou seja, a combinação de valores das entradas que se traduzem numa saída igual a zero. Em cada termo, todas as variáveis de entrada são consideradas: ou na forma normal ou negada. Uma variável toma o valor negado se o valor que lhe está associado, nas colunas das variáveis independentes, é 1 e entra na forma normal se o valor que lhe está associado é 0. Assim, a forma canónica pedida tem a seguinte forma:

$$F(A, B, C, D) = (A + B + C + \overline{D}). (A + B + \overline{C} + D). (A + \overline{B} + C + D). (A + \overline{B} + \overline{C} + \overline{D}). (\overline{A} + B + C + D). (\overline{A} + B + \overline{C} + \overline{D}). (\overline{A} + \overline{B} + C + \overline{D}). (\overline{A} + \overline{B} + \overline{C} + \overline{D})$$

Utilizando a mesma tabela de verdades no preenchimento do mapa de Karnaugh obtém-se:

Verifica-se que só é possível fazer grupos de um elemento. Sabemos por isso que a expressão final irá coincidir com a forma canónica. Como queremos comparar com a forma canónica conjuntiva, começamos por selecionar os "zeros" no mapa de Karnaugh escrevendo, de seguida, a expressão lógica de acordo com as regras aprendidas durante as AULAS!.

AB				
CD	00	01	11	10
00	1	0	1	0
01	0	1	0	1
11	1	0	1	0
10	0	1	0	1

De onde se tira que:

$$F(A, B, C, D) = (A + B + C + \overline{D}). (A + B + \overline{C} + D). (A + \overline{B} + C + D). (A + \overline{B} + \overline{C} + \overline{D}). (\overline{A} + B + C + D). (\overline{A} + B + \overline{C} + \overline{D}). (\overline{A} + \overline{B} + C + \overline{D}). (\overline{A} + \overline{B} + \overline{C} + \overline{D})$$

Como ambas as expressões são idênticas, prova-se então que a forma canónica é a forma mais simples possível. Isso não significa que sejam precisas tantas portas lógicas para a implementação deste circuito. Vimos nas AULAS que é possível fatorizar algumas operações que são realizadas mais do que uma vez reduzindo assim o número de portas lógicas necessárias. Por exemplo, o termo A+B aparece duas vezes assim como outros...

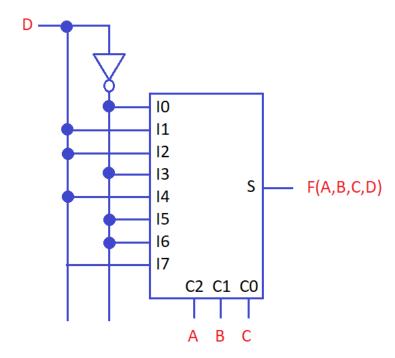
b) Utilizando um multiplexador 8:1 projete um circuito digital que represente esta função (para além do multiplexador, utilize as operações lógicas que achar necessárias). [2] R:

Mais uma vez, como vimos nas AULAS, uma função lógica combinatória arbitrária pode ser implementada recorrendo a multiplexadores. Neste caso é pedido o uso de um multiplexador 8:1 o que significa que este dispositivo tem apenas três entradas de controlo. Havendo 4 variáveis independentes, uma delas será introduzida no sistema a partir das 8 entradas de dados. O algoritmo estudado para implementar esta solução é bastante simples. Começa-se por fazer grupos de duas linhas consecutivas. Um detalhe interessante é que, em cada um desses grupos, as variáveis A, B e C não mudam de valor. Serão essas variáveis que estarão associadas às entradas de controlo. Neste caso vamos assumir que a entrada de

controlo MAIS SIGNIFICATIVA está associada à variável A e a menos significativa à C. Assim, obtém-se:

Α	В	С	D	F(A,B,C,D)	
0	0	0	0	1	F(A,B,C,D)=D'
0	0	0	1	0	
0	0	1	0	0	F(A;B;C;D)=D
0	0	1	1	1	
0	1	0	0	0	F(A;B;C;D)=D
0	1	0	1	1	
0	1	1	0	1	F(A,B,C,D)=D'
0	1	1	1	0	
1	0	0	0	0	F(A;B;C;D)=D
1	0	0	1	1	
1	0	1	0	1	F(A;B;C;D)=D'
1	0	1	1	0	
1	1	0	0	1	F(A;B;C;D)=D'
1	1	0	1	0	
1	1	1	0	0	F(A;B;C;D)=D
1	1	1	1	1	

O esquema final fica:



3- A adição de um bit de paridade é uma técnica muito utilizada na transmissão de informação no formato digital a fim do recetor ser capaz de detetar se ocorreu ou não um erro. É o caso de muitos protocolos de comunicação série assíncronos onde, para além dos bits de mensagem e de controlo, é acrescentado um bit de paridade. O bit de

paridade é '1' se o número de bits a '1' da mensagem for ímpar e '0' se for par. Por exemplo, se a mensagem de 8 bits a transmitir for '00010000' então o bit de paridade é '1'. Por outro lado, se fosse '10010000', o bit de paridade seria '0'. Note que, se o número de bits a '1' for nulo (ou seja, caso se trate do binário '0'), a paridade do mesmo será '1'. Projete um circuito **combinatório** que, dada uma mensagem de **4 bits**, este seja capaz de determinar automaticamente o seu bit de paridade. Para isso deve:

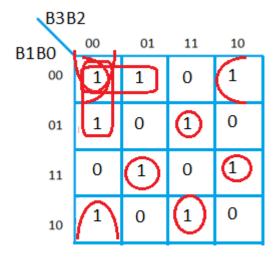
I. Obter a tabela de verdades; [2]

R:

B3	B2	B1	B0	PARIDADE (P)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

II. Derivar as equações lógicas que relacionam a saída com as entradas; [2]R:

O número de expressões lógicas de um determinado circuito lógico combinatório é igual ao número de variáveis dependentes. Neste caso, havendo apenas P como variável dependente, apenas uma equação será necessária. Como é obvio, pretendemos a expressão lógica mais simples possível pelo que iremos recorrer ao mapa de Karnaugh:



$$\begin{split} P &= \overline{B}_3 \cdot \overline{B}_2 \cdot \overline{B}_1 + \overline{B}_3 \cdot \overline{B}_1 \cdot \overline{B}_0 + \overline{B}_2 \cdot \overline{B}_1 \cdot \overline{B}_0 + \overline{B}_3 \cdot \overline{B}_2 \cdot \overline{B}_0 + \overline{B}_3 \cdot \overline{B}_2 \cdot B_1 \cdot B_0 + B_3 \cdot \overline{B}_2 \cdot B_1 \cdot B_0 + B_3 \cdot \overline{B}_2 \cdot B_1 \cdot \overline{B}_0 + B_3 \cdot \overline{B}_2 \cdot \overline{B}_1 \cdot \overline{B}_0 + B_3 \cdot \overline{B}_2 \cdot \overline{B}_1 \cdot \overline{B}_0 + B_3 \cdot \overline{B}_2 \cdot \overline{B}_1 \cdot \overline{B}_0 \end{split}$$

Que pode, opcionalmente, ser reescrita como:

$$\begin{split} P &= \overline{B}_3 \cdot \overline{B}_2 \cdot \left(\overline{B}_1 + \overline{B}_0\right) + \left(\overline{B}_3 + \overline{B}_2\right) \cdot \overline{B}_1 \cdot \overline{B}_0 + \left(\overline{B}_3 \cdot B_2 + B_3 \cdot \overline{B}_2\right) B_1 \cdot B_0 + B_3 \cdot B_2 \cdot \left(\overline{B}_1 \cdot B_0 + B_1 \cdot \overline{B}_0\right) \\ &= \overline{B}_3 \cdot \overline{B}_2 \cdot \left(\overline{B}_1 + \overline{B}_0\right) + \overline{B}_1 \cdot \overline{B}_0 \cdot \left(\overline{B}_3 + \overline{B}_2\right) + B_1 \cdot B_0 \cdot \left(B_3 \oplus B_2\right) + B_3 \cdot B_2 \cdot \left(B_1 \oplus B_0\right) \end{split}$$

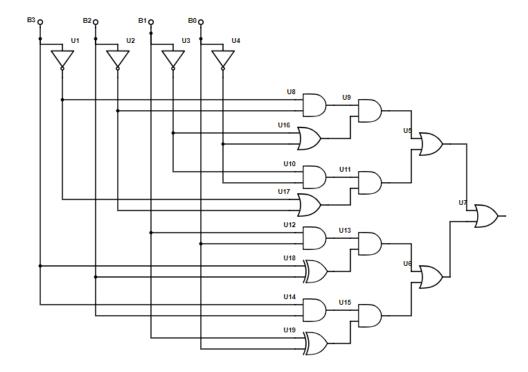
Nota:

Observem que esta expressão pode ser ainda tornada mais compacta. De facto, se repararem bem para a tabela de verdades podem verificar que, com exceção da primeira linha, o resultado do bit de paridade não é mais do que o resultado da soma módulo 2 dos quatro bits de entrada. Assim, a expressão anterior pode ser obtida por:

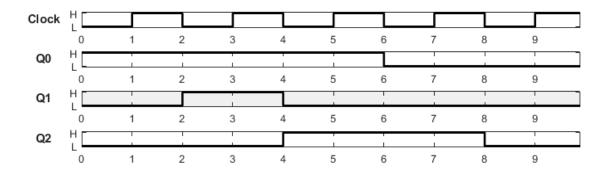
$$P = (B_3 \oplus B_2 \oplus B_1 \oplus B_0) + (\overline{B}_3 \cdot \overline{B}_2 \cdot \overline{B}_1 \cdot \overline{B}_0)$$

Como sugestão, verifiquem expandindo esta expressão, que se trata da mesma igualdade obtida anteriormente. Neste caso, o diagrama lógico é bastante simples como podem perceber.

III. Desenhar o diagrama lógico. [2]



4- O diagrama temporal representado em baixo descreve o comportamento de um circuito sequencia síncrono constituído por 3 flip-flop's tipo **D** ativos à transição **descendente**. Considere que a sequência de saídas desses flip-flop's se repete indefinidamente.



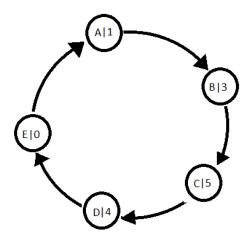
a) Considerando que a ordem de significância dos bits à saída do contador aumenta com o índice associado à letra Q (ou seja, Q₀ representa o LSB e Q₂ o MSB), indique qual é a sequência de contagem. [1]

R:

Mais uma vez, e para quem esteve presente nas AULAS, quando se falou em contadores foi referido, e feito exemplos no quadro, que tipicamente o valor da sequência de contagem não é mais do que o equivalente na base 10 da sequência de bits composta pelos valores à saída dos flip-flop's. Como é obvio, esse valor depende de qual dos bits é considerado o mais significativo e o menos significativo. Neste caso, é referido que a significância aumenta com o valor do índice. Por isso Q2

fornece o bit mais significativo e Q0 o menos significativo. Inicialmente a sequência de valores para Q2 Q1 Q0 é "0 0 1" e, a cada transição descendente do sinal de clock, os valores passam por: "0 1 1", "1 0 1", "1 0 0", "0 0 0". Em decimal, a sequencia de contagem é portanto 1,3,5,4,0 que se repete indefinidamente.

- b) Projete o circuito digital que seja capaz de produzir as ondas do diagrama temporal acima ilustrado. Para isso deve:
 - I. Desenhar o diagrama de estados do contador; [1]



De forma a simplificar o desenho do contador, e dado que todos os valores de saída são distintos, aconselha-se a seguinte atribuição de estados:

A - 001

B - 011

C - 101

D - 100

E - 000

II. Preencher a tabela de transição de estados; [2]

R:

Estados Presentes	Estados Seguintes		Saídas
Q2 Q1 Q0	Q2 Q1 Q0	D2 D1 D0	S2 S1 S0
000	001	001	000
001	011	011	001
010	XXX	XXX	XXX
011	101	101	011
100	000	000	100
101	100	100	101
110	XXX	XXX	XXX
111	XXX	XXX	XXX

III. Obter as equações de excitação; [2]

<u>D2</u>

Q2 Q1 Q0	00	01	11	10
0	0	х	x	0
1	0	1	x	1

D2 = Q1.Q0 + Q2.Q0 = Q0.(Q1 + Q2)

<u>D1</u>

Q2 Q1 Q0	00	01	11	10
0	0	х	х	0
1	1	0	х	0

D1=Q2'.Q1'.Q0

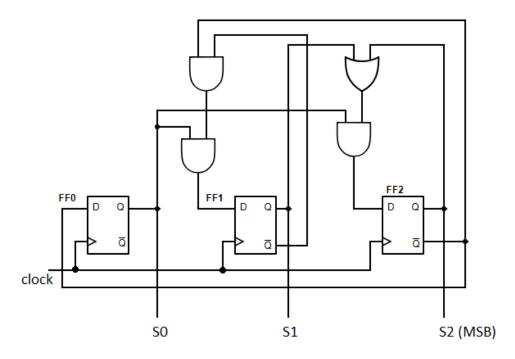
<u>D0</u>

Q2 Q1 Q0	00	01	11	10
0	1	x	×	0
1	1	1	х	0

D0=Q2'

IV. Desenhar o diagrama lógico do contador; [1]

R:



Considere "don't care" o comportamento da máquina fora dos estados utilizados.

FIM DA PROVA