
Readme.txt
- This document is provided without warranty.

- I apologizes for any spelling and grammatical errors.

- The figures have not been changed and present themselves as in the
original document.

- Suggestions and comments are wellcome.

(c)2011 - João Paulo Coelho

1ágina p



 

 
 
INSTITUTO POLITÉCNICO DE BRAGANÇA 
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DIGITAL CONTROL 
 

L E C T U R E  N O T E S     
 

 
 
 
 
 
 
 

João Paulo Coelho 
 
 
 
 
 
 
 
 
 
 
 

2005/2006 



  



 

 

 

 

 

 

 

 

 

 

 

© 2006 - JOAO PAULO COELHO 
THIS DOCUMENT WAS WRITTEN TO SUPPORT THE TEACHING OF DIGITAL 

CONTROL AT THE POLYTHECNIC INSTITUTE OF BRAGANÇA. IT’S NOT PERMITTED 

THE PUBLIC USE OF THIS DOCUMENT WITHOUT THE EXPRESS CONSENT OF THE 

AUTHOR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J o a o  P a u l o  C o e l h o  

Polytechnic Institute of Bragança 

School of Technology and Management 

5700 Bragança - Portugal 

Web: www.ipb.pt/ ~jpcoelho 

E-Mail: jpcoelho@ipb.pt 

 





 

J. P. COELHO i

 
 

 
 

Index 
 
0  Introduction and Objectives ..................................................................... 1 

0.1  Digital Control: What is it about? .......................................................... 4 

0.2  Document Structure ............................................................................. 5 

0.3  Pre-requisites ....................................................................................... 6 

1  Continuous-Time Control ......................................................................... 7 
1.1  Basic Concepts for Control Systems .................................................... 7 

1.1.1  Control System Stability .............................................................. 10 

1.1.2  Control systems performance evaluation .................................... 12 

1.1.2.1  Steady-State performance criteria ........................................... 13 

1.1.2.2  Time Domain specifications ..................................................... 14 

1.1.2.3  Frequency Domain specifications ............................................ 15 

1.1.3  Open-loop first-order systems ..................................................... 16 

1.1.4  Open-loop second order systems ............................................... 17 

1.1.4.1  Poles location and transient response ..................................... 19 

1.1.5  Reducing the system order ......................................................... 20 

1.1.6  Noise Immunity vs. Bandwidth .................................................... 21 

1.1.7  Systems linearization .................................................................. 23 

1.1.8  Feedback system ........................................................................ 23 

1.1.8.1  Sensitivity of closed-loop system ............................................. 25 

1.1.8.2  Steady-state error .................................................................... 27 

1.1.9  First-order closed-loop systems .................................................. 29 

1.1.10  Closed-loop second order systems ............................................. 31 

1.1.11  Open-loop vs. closed-loop response ........................................... 33 

1.2  Control Systems Design ..................................................................... 35 

1.2.1  The root-locus ............................................................................. 35 

1.2.2  Bode diagrams ............................................................................ 35 

1.2.3  Controllers Types ........................................................................ 36 

1.2.4  Controller design by pole-placement ........................................... 37 

1.2.5  Tuning PID Controllers ................................................................ 39 

Index 

i 



DIGITAL CONTROL 

J. P. COELHO ii

1.2.5.1  Ziegler and Nichols method ..................................................... 39 

1.2.5.2  Bode diagrams controller design ............................................. 43 

1.2.5.3  Analytical design strategy ........................................................ 44 

1.2.6  Lead/Lag controller design strategies ......................................... 45 

1.2.6.1  Phase-lead controllers ............................................................. 45 

1.2.6.2  Phase lag Controllers .............................................................. 53 

2  Discrete-Time Control ............................................................................. 57 
2.1  Sampling and Reconstruction ............................................................ 57 

2.1.1  Process Sampling ....................................................................... 59 

2.1.2  Sampling distortion aspects ........................................................ 65 

2.1.3  Quantization ................................................................................ 68 

2.1.4  Reconstruction ............................................................................ 70 

2.1.4.1  Ideal Reconstruction ................................................................ 71 

2.1.4.2  Real Reconstruction ................................................................ 73 

2.1.4.3  Effect of the ZOH dynamics ..................................................... 77 

2.2  The starred transform and the Z transform ........................................ 81 

2.2.1  Evaluation of E * (s) in closed form ............................................. 84 

2.2.2  The Z transform .......................................................................... 86 

2.2.3  Modified Z Transform .................................................................. 87 

2.2.4  Inverse Z transform and difference equations ............................. 92 

2.3  Mapping the s into the z plane ........................................................... 95 

2.3.1  Discrete-time system frequency response .................................. 98 

2.3.1.1  Frequency response geometric evaluation .............................. 99 

2.3.1.2  Discrete-time system stability ................................................ 101 

2.3.2  Continuous Transfer Functions Discretization........................... 104 

2.3.2.1  Euler forward and backward .................................................. 108 

2.3.2.2  Bilinear or "Tustin" transformation. ........................................ 112 

2.3.2.3  Pole-Zero mapping ................................................................ 114 

2.4  Sample Period Choice ..................................................................... 117 

2.5  Digital Control Systems Analysis...................................................... 120 

2.5.1  Open-loop sampled systems..................................................... 120 

2.5.2  Closed-loop sampled systems .................................................. 124 

2.5.3  Algebraic techniques for stability analysis ................................. 126 

2.5.3.1  Routh-Hurwitz criterion for discrete-time systems ................. 126 



DIGITAL CONTROL 

J. P. COELHO iii

2.5.3.2  Jury’s Criterion ...................................................................... 127 

2.6  Digital Control Design ...................................................................... 128 

2.6.1  Zero-order hold system impact ................................................. 129 

2.6.2  Effect of Anti-Aliasing Filter ....................................................... 131 

2.6.3  Design by Emulation ................................................................. 135 

2.6.3.1  Digital processor effect .......................................................... 142 

3  Exercises ............................................................................................... 145 
4  Appendices ............................................................................................ 157 

A1.  Laplace Transform ........................................................................... 157 

A2.  Fourier Theory ................................................................................. 161 

A3.  Some Laplace Transform Pairs ........................................................ 165 

A4.  Some transform pairs Z .................................................................... 167 

5  References ............................................................................................. 169 
6  Index ....................................................................................................... 171 





 

www.ipb.pt/~jpcoelho/downloads 1

 
 

 
 

0 Introduction and Objectives 
 

 

N 1859, Charles Darwin published his theory on the evolution of species, 

according to which, the phenotype changes of organisms was due to slow 

changes of the medium were those organisms live. In other words, when the 

performance criteria changes, the species tend to physically change in order to 

adapt to these new conditions. In ecological terms this phenomenon describes 

a feedback loop between a species and the environment around it. 

The regulation by feedback is not exclusive to biological systems. In fact, 

feedback control is the basic mechanism by which systems, whether 

mechanical, electrical or biological, maintains its balance. The control actions 

taken in this context are based on the difference between the desired state and 

current system state, i.e. the adaptation is made according to the error. 

This curricular unit deals with the particularity that, in large part of the control 

loop, the information is conveyed by an electric signal (analog or digital). This 

control strategy is used almost everywhere in man-made machinery. The 

following diagram present the fundamental building blocks of a closed loop 

digital control system [3] . 

 

Fig 1. Block diagram of a feedback control system. 

Chapter 

0 
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It is important to note that every block in this architecture has it proper 

dynamics. The control algorithm must deal with the overall dynamic behaviour 

equivalent to cascading all the referred elements. However some of them have 

almost no impact on the global system dynamic and others may be crucial.  

Looking again to figure 1 one can identify three main components. Namely, 

 Measurement chain. 

 Actuation chain. 

 Control Algorithm. 

 

The measuring chain is the subsystem responsible for the acquisition of the 

control variable. This block in built around a sensor element. In turn, the sensor 

translate variations of the control variable into variation of any electric property 

such voltage, impedance or frequency. 

The acquired signal, properly conditioned, will be responsible for providing 

information regarding the present system state. This state is compared with the 

desired one, resulting in a control signal supplied to the actuation chain. The 

command order, after being adapted, will be used to excite some type of 

actuator. The actuator performs the opposite role of the sensor: convert a 

signal, usually electrical, in another non-electrical. Examples of electric 

actuators are the electric motor, in which electrical current is converted into 

rotation energy, or pneumatic cylinders, driven by a solenoid valve, where 

electrical current is converted, indirectly, into axial displacement. 

The block that takes the system state and provides the command signal is 

called the compensator or controller. In an electrical perspective, this controller 

may be analog or digital (note that, in general, the controller can be of different 

nature such as mechanical, pneumatic or hydraulic). Regardless of the 

controller nature its operation mode is the similar: to perform algebraic 

operations between signals. For analog controller, mathematical operations are 

performed using, for example, adders, integrators and differentiators designed 

around operational amplifiers. On the other hand, in the case of digital 

controllers, the calculations are carried out by logic gates (more specifically 

microprocessors). 
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The operations complexity carried out by the controller can range from a simple 

hysteresis comparison (on/off control) to a more elaborate control strategy such 

as the three-term control (Proportional-Integral-Derivative). This last technique 

will be reviewed in Chapter 1. 

In the digital controller field, since it’s easier to implement more elaborated 

numerical computation routines, more advanced control strategies can be 

found. An example of this is a technique known by adaptive control were the 

controller adapts to changes in the process dynamics or disturbance. The plant 

dynamic changes are sensed and the controller degrees-of-freedom are 

adjusted accordingly. Figures 2 and 3 represent both a simple on/off control 

strategy and an adaptive one [1]. 

 

Fig 2. Block diagram of a control system on / off type 

 

Fig 3. Block diagram of an adaptive control system 

At present time, due to the proliferation and low-cost of digital computer 

systems and given the enormous benefits associated with it, control systems 

based on numeric processors such as DSPs, microcontrollers or 

microprocessors dismissed, almost completely, analog controllers of their 

functions. For this reason it’s important the study of digital control theory on 

modern technological courses. 
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0.1 Digital Control: What is it about? 

The objective of a control system is to force a system to keep, as close as 

possible, to the reference state despite possible system disturbances. In order 

to do this, the controller generates a signal obtained by algebraic manipulation 

of the system state signal. 

In this context, the control design strategy is based on the answer to the 

following question: 

How to establish the relationship between control actions and system 

information? 

 

Until the nineteenth century, the control systems design involved only empirical 

knowledge: trial and error and a good dose of intuition. Maxwell in 1868 made 

the first rigorous presentation on the control system stability. Thereafter the 

control theory has adopted its formal language: mathematics. 

Since Maxwell’s stability analysis, and to the present day, numerous people 

have contributed to the scientific maturity of control theory. Among them are 

Lyapunov, Nyquist, Bode and Popov, just to name a few. The two great wars, 

the space race and the telecommunications development were the major 

engines that drove, without precedence, new development methods for analysis 

and design of control systems. 

Digital control appears as an "upgrade” to analog controllers. Besides the limit 

on the achievable operations complexity, the limits and tolerances of the 

physical components used in analog control was a serious disadvantage. More 

specifically the advent of digital control brought the following advantages: 

 Increased performance 

 Lower costs 

 Reliability 
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 Flexibility 

Regarding the first item, due to compensator complexity, generally the control 

systems performance increases. Additionally, since the digital processors cost 

tends to decrease the price of digital controllers are getting lower. Moreover, 

given that the controller coefficients are not generated by physical components, 

there are no drifts in the controller parameters. Thus we are witnessing an 

increase in reliability as well as in the replication capacity of the controllers. The 

ability to change, by "software”, the controller parameters reflects a more agile, 

and less costly, control strategy. 

Returning to the question raised initially, it’s actually the study of the theory 

underlying the analysis and design of control systems that will move us. More 

specifically, since we are concerned with digital control, the mapping 

action/information refers to the case where the information feeds a digital 

processor who, by its turn, produces the action. Due to the usual analog nature 

of the process the information derived by the sensor is time-sampled before 

used by the microprocessor. In addition, due to the finite resolution of the 

computer core, the information is also quantized. Sampling and quantization are 

two exclusive operations of digital control systems whose effects must be 

understood. So, the basic objectives that the student should pursue along this 

course are: 

 Understand discrete-time systems. 

 Understanding computer-controlled systems. 

 Being able to design digital controllers using classical techniques. 

0.2 Document Structure 

The subjects addressed in this document are condensed in Chapter 1 and 

Chapter 2. These two chapters are complemented by a set of appendices 

whose main objective is to make this document more self-contained. 

The first Chapter is intended as a review of some basic concepts of continuous 

control system theory. The understanding of those concepts will be fundamental 

to fully understand discrete-time control systems. The second Chapter presents 

the theory of sampling systems and some basic frequency-domain controller 
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design techniques. 

In each chapter, and whenever relevant, text boxes are presented with 

demonstrations and concepts which, although not contemplated in terms of 

program content, was found worthwhile to include . 

0.3 Pre-requisites 

In order to be able to grasp the subjects addressed in this curricular unit, the 

student must have some knowledge in the following subject areas: 

 Differential and integral calculus; 

 Complex analysis; 

 Systems and Signals; 

Some knowledge on data acquisition systems (A/D and D/A converters), under 

the instrumentation point-of-view, are expected. Additionally it’s also expected 

some experience in using the numeric computation tool MATLAB® 1. 

 

 
[CHAPTER ◄ 0] 

 

                                                 
1 MATLAB is a trademak of The MathWorks Inc. 
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1  Continuous-Time Control 
 

 

1.1 Basic Concepts for Control Systems 

 

HE main motivation, behind the design of a control system, is ...to force the 

system to exhibit a response profile, as consistent as possible, with the one 

required. This profile should be as independent, as achievable, to disturbances 

that might affect the system. 

In order to do this, the majority of control system deigns procedures are based 

on a model (usually mathematical) of the process to control. Since the 

behaviour of a real dynamic system is often too complex to be modelled 

completely, usually only an approximation is used. In general these 

approximations rely on a set of assumptions such as linearity and time 

invariance. 

Usually the dynamic systems behaviour, as well as the signals handled by 

them, are described, in the time domain, through a set of differential equations. 

For example, in continuous time domain, a signal or deterministic system can 

be described by a homogeneous differential equation of the type, 

2 1

2

( ) ( ) ( ) ( )( ), , , ,
n n

n n

d x t dx t d x t d x tx t
dt dt dt dt

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
F  (1)

with initial conditions, 

2 1

2 1

(0) (0) (0)(0), , , ,
n

n

dx d x d xx
dt dt dt

−

−

⎧ ⎫
⎨ ⎬
⎩ ⎭

 (2)

In the particular case of linear and time invariant systems, its dynamic 

behaviour is usually described by differential equations with constant 

coefficients of the form: 

Chapter 

1 
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1
0

1 0 0 01

( )( ) ( ) ( ) ( )
mn n

n mn n m

d u t Td y t d y ta a y t b b u t T
dt dt dt

−

− −

−
+ + + = + + −  (3)

where 0 0T ≥  refers to a pure time delay. 

[ note ] 
Signals can also be described by differential equations. For example consider 

the particular case of the 1-D signal ( )( ) sinx t A t= ⋅ ω +ϕ . Deriving it twice with 

respect to time, 

( )( ) cosdx t A t
dt

= ω⋅ ω + ϕ  

( )
2

2
2

( ) sind x t A t
dt

= − ω ⋅ ω +ϕ  

On the other side since ( )sin ( )A t x t⋅ ω +ϕ =  the previous expression takes the 

form, 
2 2

2 2
2 2

( ) ( )( ) ( ) 0d x t d x tx t x t
dt dt

= −ω ⋅ ⇒ +ω ⋅ =  

The solution of this differential equation is of type: 

1 2( ) j t j tx t C e C eω − ω= ⋅ + ⋅  

Taking into considerations the initial signal and the Euler relation leads to, 

( )( ) sin
2 2

j j t j j tA Ax t A t e e e e
j j

ϕ ω − ϕ − ω= ⋅ ω +ϕ = ⋅ − ⋅  . Hence, 

1 2,
2 2

j jA AC e C e
j j

ϕ − ϕ= = −  

Thus it is easy to see that 

( )1 2 1 20 0
(0) sinj t j t

t t
x C e C e C C Aω − ω

= =
= ⋅ + ⋅ = + = ⋅ ϕ  and 

( )1 2 1 20 0

(0) cosj t j t

t t

dx j C e j C e j C j C A
dt

ω − ω

= =
= ω ⋅ − ω ⋅ = ω − ω = ω⋅ ϕ  

Thus, it can be concluded that ( )( ) sinx t A t= ⋅ ω +ϕ  can be represented by the 

differential equation: 
2

2
2

( ) ( ) 0d x t x t
dt

+ω ⋅ =  subject to initial conditions  

( ) ( )(0)(0) sin , cosdxx A A
dt

⎧ ⎫= ⋅ ϕ = ω⋅ ϕ⎨ ⎬
⎩ ⎭
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An alternative way of representing a system modelled by differential equations 

arises from the application of the Laplace transform. Thus, for a given set of 

initial conditions, the generic differential equation presented in (3) is replaced by 

the following expression in the Laplace domain2 . 

( ) ( )( ) ( )
( ) ( )

N s CI sY s U s
D s D s

= +  (4)

where 

0

1
1 0

1
1 0

( )
( )

m m
sT m m

n n
n

b s b s bN s e
D s s a s a

−
− −

−
−

+ + +
= ⋅

+ + +
 (5)

and ( )CI s  refers to a polynomial in s  associated with the initial conditions of the 

system. Considering only the forced response, i.e. considering the initial 

conditions as zero, the relationship between ( )Y s  and ( )U s  is called the 

transfer function (TF) and has the shape of the ratio of two polynomials in s  as 

shown in the following equation. 

0

1
1 0

1
1 0

( ) ( ) ( )
( ) ( )

m m
sT m m

n n
n

b s b s bY s N s e G s
U s D s s a s a

−
− −

−
−

+ + +
= = ⋅ =

+ + +
 (6)

To ensure system causality, the degree of the denominator polynomial must be 

greater than, or equal, to the polynomial degree of the numerator, i.e. n m≥ . 

Causality is, of course, closely linked to the system physical existence. 

[ note ] A system is said to be causal if its response does not depend on future 

values of the input signals.  

The values of s  that turn the ratio (6) equal to zero are called the system zeros. 

On the other hand, the values of s  that make ( )G s  infinite are designated by 

system poles system. A system with n  poles is called a system of order n   If it 

has l  poles at the origin ( 0s = ) then it’s a type l  system. 

[ note ] As one would see further ahead, the system type is closely related to 

the order of the polynomial, associated with the input signal, that the 

system can follow with finite steady-state error. 

Depending on the ratio between the number of poles and the number of zeros 

the transfer function can be designated by: 
                                                 
2 It is advised  a previous study of Chapter A1 of this document 
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 Proper if lim ( )
s

G s C
→∞

= < ∞  - In this case there are equal number of finite 

poles and zeros; 
 Improper if lim ( )

s
G s

→∞
= ∞  - An improper transfer function have more zeros 

than poles; 
 Strictly proper if lim ( ) 0

s
G s

→∞
= - This is the case where there are more 

finite poles than zeros. 

[ note ] Most physical systems are modelled by strictly proper transfer 

functions. Moreover, as already said, they all require that the number of 

zeros is less than or equal to the number of poles in order to ensure 

causality. 

Finally note that, in Laplace transform, s  is a complex variable of the form 

s j= σ+ ω  where ω  refers to the angular frequency (in radians per second) and 

σ  is a damping coefficient whose value is related to the convergence region of 

the Laplace transform. Hence the system poles and zeros can be geometrically 

represented on a pair of orthogonal axis: one associated to the real part of the 

singularities and other to the imaginary part. This plot is designated by pole-

zero map and, in reality, is just the representation of complex numbers in the 

Argand plane. 

In a stable system (more on this subject ahead) there is a tight relationship 

between the Laplace transform and the Fourier transform. One can say that the 

Fourier transform is equal to the Laplace transform if 0σ = . In this case s j= ω  

and ( )G jω  as a function of the frequency ω  provides what is known as 

frequency response. Since ( )G jω  is complex, it can be represented by 

magnitude and phase plots. The graphs of magnitude and phase of ( )G jω , as a 

function of ω , are frequently designated by Bode plots. 

1.1.1 Control System Stability  

In control system design, the system stability is a major concern topic and must 

always be kept at line-of-sight. The stability of a causal, linear and time-invariant 

system can be evaluated from the solution of the characteristic equation. The 

characteristic equation is the mathematical equality obtained as ( ) 0D s = . The 

roots of ( )D s , are poles of ( )G s . 
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A causal, linear and time-invariant system is said asymptotically stable if all its 

poles, sometimes called modes, have negative real part. On the other hand, if 

there is at least, one pole with positive real part, the system is asymptotically 

unstable. In the case a system has one pole with real part equal to zero then 

one said he is marginal stable. 

[ note ] 
A system to be stable it’s necessary that its impulse response is absolutely 

integrable (absolutely summable on discrete-time systems) [11] [12]. 

Mathematically this definition is expressed as: 

( )h t dt
+∞

−∞

< ∞∫  or [ ]
k

h k
+∞

=−∞

< ∞∑  

Where ( )h t  and [ ]h k  denotes de impulse response of continuous and discrete-

time systems respectively. This is also one of the conditions necessary for a 

system to admit representation in the Fourier because: 

( ) ( ) j tH j h t e dt
+∞

− ω

−∞

ω = ⋅∫  

and for convergence one needs to have: 

( )h t dt
+∞

−∞

< ∞∫  (one of the Dirichlet conditions [11] [12]) 

Thus, if a linear time-invariant system with impulse response ( )h t  admits 

representation in Laplace, ( )H s , the convergence region must includes the jω  
axis in order to admits Fourier representation and, by inherence, for the system 

to be stable. Note also that, if the system is causal, the region of convergence is 

the entire plane to the right of the rightmost pole. So, if a system is linear time-

invariant and causal, it’s necessary that all the poles are at the left side of the 

jω  axis for the system to be asymptotically stable (all the poles must have 

negative real parts). Obviously, if a system is not causal, to be stable all the 

poles must lay down in the right half-plane! 

An alternative stability analysis derives from the system forced response. In that 

perspective, a system is said to be bounded input/ bounded output (BIBO) 

stable, if his response to a bounded input is bounded. Hence a linear time-

invariant system is BIBO stable if, regardless of the signal profile, an amplitude-



DIGITAL CONTROL 

jpcoelho@ipb.pt 12

limited input lead always to an amplitude-limited output. 

[ note ] Bounded Input /Bounded Output Stability 

Let us assume a linear time-invariant system governed by the equation, 

{ ( )}y T x t=  

where {}T ⋅  designates a transformation operation over the input signal ( )x t . 

This system is stable in the BIBO sense if, after ensuring that ( )x t  is limited in 

amplitude by a generic finite value, say xB , the response ( )y t  is also limited in 

amplitude by an arbitrary finite value yB . So if ( ) ( ) ,x yx t B y t B t≤ < ∞→ ≤ < ∞ ∀  

then the system is BIBO stable. 

Note that an asymptotically stable system is BIBO stable but the converse is not 

true. Consider, for example, a reducible second order system (one pole and one 

zero at the same point) with transfer function, 

( )( )
( ) s aG s

s a s b
+

=
+ +  

 

if a  is negative and b  positive the system is BIBO stable but it is not asymptotic 

stable since the characteristic equation has a pole with positive real part. 

[ note ] The zeros location in the s  plane does not contribute to the system 

stability. However there are different designations for systems with all 

zeros in the right half-plane and for systems with, at least, one zero in 

the left half-plane. The first type are called minimum phase systems 

and the latter non-minimum phase systems. 

1.1.2 Control systems performance evaluation 

The design procedure of a control system is relates to the fulfilment, by the 

system under closed-loop, of a set of performance specifications. Those 

specifications can be made over two different domains: time domain and 

frequency domain. In the former the figures of merit are expressed in terms of 

time constraints and in the later, as the name implies, the constraints are 

established in terms of frequency. The characteristics that a given system 

should exhibit can be defined in one or both domains. Usually, in overall, they 
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impose lower and upper limits to the following system characteristics: 

 Speed of response and bandwidth; 

 Stability (relative); 

 Maximum allowed steady-state error. 

In the following three subsections one presents and discusses the most 

common performance criteria in control systems. 

1.1.2.1 Steady-State performance criteria 

The steady-state error performance index is a measure of system accuracy 

when referred to a specific excitation signal. Normally three types of input are 

considered: 

 Unit step (zero-order excitation signal) 

 Ramp (first-order excitation signal) 

 Parabola (second-order excitation signal) 

The response to the first input signal measures the system's ability to react to 

rapid changes of the reference signal, and the remaining the system capacity to 

follow trajectories. In the time and frequency domain the above signals have the 

following mathematical representation: 

 Step Ramp (gradient m ) Parabola 

Time ( ) ( )r t u t=  ( ) ( )r t m t u t= ⋅ ⋅  21( ) ( )
2

r t t u t=  

Frequency 
1( )R s
s

=  2( ) mR s
s

=  3

1( )R s
s

=  

The steady-state error ( sse ) is the difference between the instantaneous system 

response and his steady-state value. For stable systems this value can be 

analytically determined using the final-value theorem. This topic will be 

discussed in section § 1.1.8.2. 

[ note ] Final-value theorem 

The final value of the function ( )f t , whose Laplace transform is ( )F s , is: 

0
lim ( ) lim ( )
t s

f t sF s
→∞ →

=  
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Example: The unity step steady-state error of the first order system, 

( )G s
s a
α

=
+

 

can be computed by the following set of algebraic operations: 

( ) 1, ( )
( )

Y s U s
U s s a s

α
= =

+
  

and the error is given by ( ) ( ) ( )E s U s Y s= −  

Since 
( )

( )Y s
s s a

α
=

+
 and  

( )
1 1( ) 1E s
s s s a s s a

α α⎛ ⎞= − = −⎜ ⎟+ +⎝ ⎠
 

then the steady-state error is given by: 

0 0
lim ( ) 1 limss s s

s a ae sE s
s a s a a→ →

α + −α −α⎛ ⎞= = − = =⎜ ⎟+ +⎝ ⎠
 (If a = α  then sse  is zero) 

1.1.2.2 Time Domain specifications 

The time domain specifications are usually defined in terms of system response 

to a unit step. Among other, the following performance criteria are highlighted: 

 Rise Time ( RT ) - Time required for the unit step system response to raise 

from 10% to 90% of its value in steady state. 

 Time Delay ( DT ) - Time required for the system unit step response to 

reaches 50% of its value in steady state.  

 Settling Time ( ST ) - Time required for the unit step system response to 

reach, and stay, within a specified percentage of its value in steady state 

(typically ± 1%, ± 2% or ± 5%). 

 Time Constant (Predominant) ( τ ) - Refers to an alternative measure of 

settling time. For a stable system of order greater than one, the time 

constant refers to the time required for the transient response envelope 

to reaches 63% of its value in steady state. 

 Overshoot ( Sδ ) - Is the maximum difference between the transient and 

steady state system response to a step input. This criterion is 

representative of system relative stability and is usually presented as a 

percentage relative to the steady-state value. 
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1.1.2.3 Frequency Domain specifications 

The most common specifications in the frequency domain are: 

 Gain Margin ( mG ) and Phase Margin ( mP ) - Define a criterion to measure 

the system relative stability. 

 Bandwidth ( BW ) - It is a measure of the system response speed and is 

often defined as the range of frequencies over which the gain does not 

differ by more than 3dB of its value at a specified frequency. 

 Resonance peak ( rM ) - It is also a measure of relative stability and 

refers to the maximum magnitude value of the closed-loop frequency 

response. This criterion is closely related to phase margin and often both 

quantities are related to the following approximation [6]: 

( )
1

2 sin 2r
m

M
P

≈
⋅

 

[ note ] 

Because the models used in control system design are only approximations, it 

is not sufficient, to guarantee system stability, that the closed-loop poles are in 

the right half-plane. Thus, even if the system is stable, we want to know how 

near is from instability. A system with low stability margin is closer to instability 

than a system with larger stability margin. Stable systems with low stability 

margins only work in simulation (most likely, in practice, the system is unstable). 

Usually the systems are destabilized when the gain exceeds a certain threshold 

or there is too much phase lag. The gain and phase tolerances are referred as 

gain and phase margins. 

The gain margin ( mG )is defined as the magnitude of the inverse open-loop 

transfer function evaluated at frequency πω : the frequency in which the phase 

angle is -180 ° (phase crossover frequency), 
1( )mG G j

π

−

ω=ω
= ω  

On the other hand, phase margin ( mP ) is defined as 180 ° plus the phase angle 

of the open-loop transfer function at frequency gcω : the frequency at which the 

gain is unity (gain crossover frequency), 
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( )
( ( ) 1)

180 arg ( )
gc

m G j
P G j

ω=ω ω∴ ω =
= + ω  

Empirically it is desirable that the system phase margin is between 45 ° and 60° 

and the gain margin between 2 and 4 (6 to 12 dB), 

45º 60º e 6 12m mP dB G dB< < < <  

When the open-loop frequency response produces a phase shift of 180 ° there 

is a risk of instability if the gain is above unity. More specifically the system is 

closed-loop unstable if: 

0 and 0m mG P< ≤  

In some circumstances, the gain and phase margins cannot be used as system 

instability indicators. For example in first and second-order systems phase 

never crosses the line of 180 degrees so the gain margin is always infinite. 

1.1.3 Open-loop first-order systems 

Understanding the behaviour, both in time and frequency domain, of first and 

second order systems is very important in analysis and design of control 

systems. This is because many physical systems have dynamics that can be 

approximated to the ones of first or second order systems. 

A first-order system has only one pole and has the following generic transfer 

function: 

( ) aG s
s a

=
+

 (7)

where the pole is located at s a= − .  

 

The impulse system response has the following mathematical formulation: 

1

( ) ( ) ( )
tath t a e u t a e u t

−− τ= ⋅ = ⋅  (8)

From this last relation one concludes that the first order system time constant is 

equal to the inverse of the poles’s absolute value. On the other hand, its 

bandwidth is equal to the magnitude of the pole: BW a= . 

Thus in a first-order system, 1BW −τ =  which means that the higher the 
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bandwidth, the smaller the time constant and the faster is the system response. 

For some of the performance criteria discussed in section § 1.1.2.2 is easy to 

see that, in a first-order system, the rise time is approximately equal to: 

2.2RT = ⋅τ   

and the delay time approximately equal to: 

0.69DT ≈ ⋅τ   

1.1.4 Open-loop second order systems 

The transfer functions of second order are of vital importance in control systems 

design since the specifications (performance criteria to be met) are normally 

provied assuming the system is second order. The canonical transfer function 

for a second-order system has the following aspect: 

2

2 2( )
2

n

n n

G s
s s

ω
=

+ ζω +ω
 (9)

where nω  is called the undamped natural frequency and ζ  (zeta) the damping 

ratio. 

It is easy to verify that the two poles of this transfer function are located in: 

21n n ds j j= −ζω ± ⋅ω − ζ = σ ± ω  (10)

where dω  is called the damped natural frequency. 

Depending on the damping ratio, the system may have: 

 Two distinct pure real poles ( 1ζ > ) - Over-damped system 

 Two identical real poles ( 1ζ = ) - Critically damped system 

 Two complex conjugate poles ( 0 1< ζ < ) - System under-damped. 

The figure below illustrates the position of the poles of a canonical second order 

system, as a function of the damping factor. It should be noted that for values ζ  

below zero, the poles of the system occur in the right half plane indicating an 

unstable system. 
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Fig 4. Location of a second-order system poles as a function of ζ  

[ note ] As we will see later, there is a close relationship between the phase 

margin and the damping factor in closed loop ( clζ ). Thus, if 0clζ <  the 

phase margin is negative. This implies instability of the closed-loop 

system. 

Below is a set of functional relationships that allow to directly compute the 

values of some of the performance criteria established in § 1.1.2.2 and § 

1.1.2.3: 

 Percentage of overshoot 

( )( )2 1/ 221 2100 ln 100 / 1S Se

⎛ ⎞ζπ⎜ ⎟− −⎜ ⎟ −−ζ⎝ ⎠ ⎡ ⎤δ = ⋅ ⇒ ζ = π δ +⎣ ⎦  (11)

 Settling time 

( 1%) 4.6ST ± = σ  or ( 2%) 4ST ± = σ  (12)

 Rise Time 

1.8R nT = ω  (13)
 Time Constant 

1τ = σ  (14)
 Bandwidth 

The bandwidth depends on the natural frequency and ζ : 

( )
1/ 21/ 22 2 41 2 2 4 4nBW ⎡ ⎤= ω − ζ + − ζ + ζ⎢ ⎥⎣ ⎦

 (15)

However, for 0.3 1< ζ < , [ ]1.85 1.19nBW ≈ ω − ⋅ζ . 
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[ note ] Often the design of control systems assumes that the bandwidth can 

be approximated by nω , i.e. nBW = ω . 

 Resonance peak 
In second-order systems the resonance peak is strongly connected to 

the damping coefficient. In fact the following approximation is used: 

@ 2

1( )
2 1n

rM G j
ω=ω

= ω =
ζ − ζ

 for 2
2

ζ <  (16)

1.1.4.1  Poles location and transient response 

Consider a generic second order system pair of poles such as those provided 

by the expression (10). Geometrically, in the s  plane, each of the root equation 

coefficients refers to the characteristics indicated in the figure below. 

 

Fig 5. Location of poles as function of the parameters { }, , ,d nσ ω ω ζ  

Changing the location of the two poles implies a change in system response. 

The effect, on the system response to a unit step, given the variation of each 

parameter { }, , ,d nσ ω ω ζ  can be summarized as follows: 

 The settling time is inversely proportional to σ ; 

 The rise-time is inversely proportional to the vector pole module. More 

specifically is approximately equal to 1.8R nT ≈ ω ; 

 The overshoot is directly proportional to θ  where ( )1cos−θ = ζ ; 
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 The peak-time is inversely proportional to dω ; 

 The bandwidth is proportional to nω . 

1.1.5 Reducing the system order 

Often the system mathematical models are high-order differential equations. 

However, in many situations, these models can be approximated by differential 

equations of lower order with little information loss. The simplification is usually 

carried out by neglecting system modes with low influence on the overall 

transient response. The influence of a particular pole (or pair of complex poles) 

on the response is mainly determined by two factors: 

 The real part of the pole; 

 Relative magnitude of the residue at the pole. 

The pole real part determines the rate, by which, the transient term due to this 

pole decays. The transient component decay is proportional to the magnitude of 

the pole’s real part.  

On the other hand, the relative magnitude of the residual, i.e. the coefficient 

associated with the decreasing in time exponential, determines the percentage 

of the total response due to this pole in particular. The relative magnitude of the 

residue, associated to a particular pole, may be drastically reduced due to the 

presence of a geometrically close zero. 

Normally a pole, or pair of poles, is non-dominant if they are located far to the 

left, on the s plane, of those considered dominant (e.g. a decade or more). 

[ note ] A decade refers to a ratio of frequencies equal to 10 (ten times higher 

or lower). An alternative specification is to express the relationship in 

octaves (two times higher or lower). 

After the removal of one or more poles / zeros, the transfer function DC gain 

should be rescaled so that both transfer functions (primary and reduced) exhibit 

the same gain. 

 

In order to illustrate what has been said let us consider the following system 

transfer function: 
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( )( )
120( )

0.5 5
G s

s s
=

+ +
  

It has two poles, one in 0.5s = −  and the other in 5s = − , and the DC gain is 48. 

Since the transient response on the pole at -5 decays 10 times faster than the 

one at -0.5, we can try to approximate the 2nd order transfer function to a first 

order one with the following aspect. 

24( )
0.5

G s
s

=
+

       (Note the gain scaling ot the zero frequency!)  

In order to compare the transient behaviour of both transfer functions, the step 

response is presented in the following figure. 

 

Fig 6. Step response of both original and reduced system. 

As one can see, the dynamic behaviour of both systems is quite similar having 

a slight discrepancy only in the initial transient. 

1.1.6 Noise Immunity vs. Bandwidth 

The system bandwidth is directly proportional to the distance between the 

dominant poles and the origin of the s-plane. In other words, the system 

response time decreases and the output signal became more similar to the 

input one. 

 

In order to illustrate this statement, the next figure presents the step response of 

three systems with different bandwidth. It’s possible to verify that the response 

speed of the system with the pole at -10 is higher than the one from the system 
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with pole at -1. Moreover the response becomes to appear more “step shape 

like” for systems with high magnitude poles.  

 
Fig 7. Step response of three different first order systems 

So it is intended that the system has the highest possible bandwidth 

right? 

Now imagine the response of two first order systems, one with a pole at 0.1 and 

another with a pole at 1, to a step contaminated with white noise (random signal 

with flat spectral density). Figure 8 present the simulation results for this set-up. 

 

Fig 8. Response of two first order systems to a step contaminated with white 
noise (signal to noise ratio of approximately 6dB) 

An analysis to the above figure reveals that a faster system has lower noise 

immunity than the slower one. Thus, there is a clear compromise between 

speed of response and noise immunity. 
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1.1.7 Systems linearization 

All analysis and design techniques proposed in this curricular unit begin with the 

assumption that the system is linear. Large part of the classic tools, for both 

control systems analysis and synthesis, are based on the manipulation of linear 

differential equations (in time or in the frequency domain). This is due to the 

easier and faster mathematical manipulation of linear differential equations 

when compared with the numerical treatment usually required by nonlinear 

models. However, in reality, there are not linear systems. At least, a physical 

system is always conditioned by the nonlinear phenomena of saturation. 

However, often, a physical system operates only around a given operating point 

and, within that dynamic range of operation, the system behaviour is 

approximately linear. Since the objective of a control system is to keep the 

process variables as close as possible to an equilibrium point, often a 

compensator can be designed considering the system linear if the operating 

zone is linearized. Both the linearized model and linear analysis method are 

valid within the operating point. 

[ note ] Once the control system is synthesized, it is advisable to carry out a 

numerical simulation of the system with all its nonlinearities. 

The linearization can be seen as the process of finding a linear model that 

approximates a non-linear one. This can be done in various ways depending on 

whether or not a mathematical model of the system is available. If so, the 

linearization can be carried out by expanding the nonlinear terms in Taylor 

series and neglecting the terms with order higher than unity. Alternatively this 

can be done from the data obtained experimentally. From the data collected, 

and given that the closed-loop controlled system remains near a given 

operating point, by system identification procedures or sometimes even 

graphically, one develops a linear model valid around that operating point [6]. 

1.1.8 Feedback system 

An open-loop control system only has a proper behaviour if: 

 The system model is accurate; 
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 There are no external disturbances; 

 If the system parameters vary in a deterministic manner. 

Since these conditions rarely occur, most systems rely on control by feedback. 

A simple feedback system can be modelled by the following block diagram: 

 

Fig 9. Block diagram of a feedback control system 

Where ( )R s  refers to the reference signal that the system should follow ( )E s  

the error signal, ( )U s  is the controller output signal, ( )D s  is the disturbance, 

( )Y s  is the output signal and ( )N s  refers to measurement noise3 introduced by 

the sensors. The transfer functions ( )K s , ( )G s , ( )H s  and ( )P s  refers to the 

controller, the plant, the sensor and the disturbance. In some circumstances, 

there is a pre-filter located after the signal ( )R s  whose purpose is to eliminate 

the effect of some closed-loop zeros. 

The design of some of the Figure 9 blocks (in particular ( )K s ) should make the 

overall system behaviour to act as imposed by the project constraints. More 

specifically the system must be able to: 

 Follow the reference signal with the least possible error. 

 Reject disturbances and error signals. 

Just before moving on, a recap of some of the nomenclature, associated with 

the block diagrams of control systems, is in order. Taking into consideration the 

diagram shown in Figure 9, we present the following definitions: 

 ( ) ( )K s G s  - Direct transfer function 

 ( ) ( ) ( )K s G s H s  - Open-loop transfer function 

                                                 
3 Usually of high-frequency. 
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 ( ) ( )( ) ( )
1 ( ) ( ) ( )

G s K sY s R s
G s K s H s

=
+

 - Closed-loop transfer function 

[ note ] Although it seems that the open-loop transfer function should be 

( ) ( )K s G s  in fact, and considering ( )H s  as the sensing element, the 

way you measure the system output is considered inherent to the 

system itself. The sensor dynamics cannot be separated from the 

system dynamics itself. 
 

[ note ] Still regarding the stability margins, consider the closed-loop transfer 

function. One observes that, for a given frequency, the magnitude of 

the transfer function is infinite if the open loop gain is equal to -1. This 

corresponds, in terms of Bode plots, to a 0dB magnitude and a 180º−

phase. It is from this relation that one can infer on the closed-loop 

stability by using open-loop information. 

1.1.8.1 Sensitivity of closed-loop system 

As already said, a closed-loop system has greater immunity to variations in the 

system dynamics so it has an increased ability to cope with variations in system 

parameters. In order to validate what has been said let us consider a control 

system with unity feedback as shown in the figure below. 

 

Fig 10. Closed-loop system with unity feedback. 

The closed-loop transfer function has the following expression: 

( ) ( ) ( )( )
( ) 1 ( ) ( )

Y s K s G sT s
R s K s G s

= =
+

 (17)

Now we evaluate the sensitivity of the closed-loop transfer function to some 

system variations. In order to do this one computes the sensibility of the closed-

loop regarding the system transfer function, i.e. ( ) ( )T s G s∂ ∂  

( )
( ) ( )

2

2 2

( ) 1 ( ) ( ) ( ) ( )( ) ( )
( ) 1 ( ) ( ) 1 ( ) ( )

K s K s G s K s G sT s K s
G s K s G s K s G s

+ −∂
= =

∂ + +
 (18)
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multiplying and dividing by ( )G s  become: 

( ) ( )2
( ) ( ) ( ) 1( )
( ) ( ) 1 ( ) ( )( ) 1 ( ) ( )

T s K s G s T s
G s G s K s G sG s K s G s
∂

= =
∂ ++

 (19)

This leads to the closed-loop transfer function relative variation: 

( )
( ) 1 ( )

( ) 1 ( ) ( ) ( )
T s G s

T s K s G s G s
∂ ∂

= ⋅
+

 (20)

It follows that the closed loop transfer function is insensitive to variations in the 

process transfer function for the frequencies to which the open-loop transfer 

function is high. That is, if  

0
( ) ( )

s s
K s G s

=
→ ∞  (21)

then 

0

( ) 0
( ) s s

T s
T s =

∂
→  (22)

Thus, for the design of a robust controller (insensitive system dynamics 

variations), it is necessary to find ( )K s  so that the magnitude of the transfer 

function of open loop, is high for the frequencies at which there are significant 

variations in the transfer function of the system. 

Another particularity of a closed-loop control system has to do with his ability to 

overcome the effect of disturbances on the controlled variable. In fact, analyzing 

the effect of ( )D s  on the system output of the system of figure 9 (considering 

unity feedback and both ( ) 0R s =  and ( ) 0N s = ) one gets, 

( ) ( )( )
( ) 1 ( ) ( )

Y s P sS s
D s G s K s

= =
+

 (23)

This expression refers to the so-called sensitivity function. One concludes that, 

in order to reduce the influence of disturbances, the sensitivity function must 

provide low values for the frequencies components present in the disturbance. 

The same is to say that, considering ( )P s  constant and equal to one, the open-

loop transfer function must have a gain as high as possible in the disturbance 

frequency range. 

The same reasoning can be carried out by considering now the measurement 

error. Still based on the image of Figure 9, considering unity feedback and the 

signals ( )R s  and ( )D s  equal to zero, the influence of measurement error in the 
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output signal is modelled by the following transfer function: 

( ) ( ) ( )
( ) 1 ( ) ( )

Y s G s K s
N s G s K s

= −
+

 (24)

Therefore, to reduce the influence of measurement error, the closed-loop 

transfer function must provide low values for the frequencies range present in 

the noise. 

Finally note that, to minimize the set-point tracking error, the closed-loop 

transfer function should be constant, and close to unity, for the range of 

frequencies present in the reference signal [8]. Thus, taking into account the 

system closed-loop sensitivity to both disturbance and noise, it appears that 

there is compatibility between the set-point tracking criterion and the 

disturbance rejection. However there is incompatibility between this objective 

and the measurement error reduction. 

1.1.8.2 Steady-state error 

In many control systems design, one of the imposed criteria has to do with the 

system steady-state response. For a closed loop stable system the level of the 

system output signal, ( )y t , tends to be, in steady state, as close as possible to 

the magnitude of the command signal ( )r t . The difference between these two 

values is called steady state error and can be computed by: 

[ ]lim ( ) lim ( ) ( )ss t t
e e t r t y t

→∞ →∞
= = −  (25)

or, alternatively, in the Laplace domain, 

[ ]
0 0

lim ( ) lim ( ) ( )ss s s
e sE s s R s Y s

→ →
= = −  (26)

1.1.8.2.1 System with unity feedback 

In the case of a unity feedback system, like that presented in figure 10, the 

steady state error can be determined from the open loop transfer function as, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )OLE s R s Y S R s K s G s E s R s G s E S= − = − = −  (27)

Solving in order to ( )E s  become, 

1( ) ( )
1 ( )OL

E s R s
G s

=
+

 (28)

Applying the final-value theorem, 
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0

( )lim
1 ( )ss s

OL

sR se
G s→

=
+

 (29)

For a polynomial excitation signal of degree k  : 

01

1( ) ,kR s k
s

+
+= ∀ ∈  (30)

The steady state error expression takes the following aspect: 

( )0

1lim
1 ( )ss ks

OL

e
G s s→

=
+

 (31)

By admitting that the system is type l  and has a transfer function with form; 

( )( )
( )OL l

N sG s
s D s

=
⋅

 (32)

One concludes, by replacing (31) in (30), that: 

( )0

( )lim
( ) ( )

l

ss l ks

s D se
s D s N s s→

=
+

 (33)

From an analysis of the previous expression one can formulate the following 

conclusions: 

 If l k>  the steady-state error is zero. 

 If l k<  the steady-state error is infinite. 

 If l k=  

( )0 0

1 1lim lim
1 ( )( )1

( )

ss ls s
l OL

l

e
G s sN s s

s D s
→ →

= =
+⎛ ⎞

+⎜ ⎟
⎝ ⎠

 
(34)

Systems of type 0, I and II are the most common as well as order 0, I and II 

excitation signals (steps, ramps and parabolas). The following table 

summarizes the sse  values for all combinations between these three pairs of 

cases. 

 Order 0 Order 1 Order 2 
Type 0 1 (1 )PK+  ∞  ∞  

Type I 0  1 VK  ∞  

Type II 0  0  1 AK  

Tabela 1. Steady-state errors as function of system type and signal order (for unity 
feedback) 
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In the above table, the parameters PK , VK  and AK  are designated by position, 

velocity and acceleration constants respectively. These constants are computed 

by the following relationships (derived from equation (32)): 

0
lim ( )P OLs

K G s
→

= ,
0

lim ( )V OLs
K sG s

→
=  and 2

0
lim ( )A OLs

K s G s
→

=   

[ note ] Often, the system steady state error for a step, ramp or parabola input 

is called position, velocity and acceleration error respectively. 

1.1.8.2.2 Non-unity feedback system 

For the generic closed-loop system structure with transfer function in the 

feedback loop equals to ( )H s  (like the one shown in Figure 9), the steady state 

error can be determined from the following expression, 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ( ) ( ) ( ) CL

K s G sE s R s Y S R s R s R s G s R S
K s G s H s

= − = − = −
+

 (35)

The same is to say, 

( )( ) 1 ( ) ( )CLE s G s R s= −  (36)

Applying the final-value theorem, and for an k  - order excitation signal, the 

steady state error expression takes the following aspect: 

10

1 ( )lim CL
ss ks

G se
s +→

−
=  (37)

1.1.9 First-order closed-loop systems 

Consider a first order, causal and stable, system of the form: 

( )G s
s a
κ

κ =
+

 (38)

As one has seen earlier, the system bandwidth is equal to the pole magnitude. 

Additionally, and for 1a >κ , the open-loop gain crossover frequency is gcω = κ . 

In closed-loop, with unity feedback, the transfer function becomes: 
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( )
1 ( )

G s
G s s a

κ κ
=

+ κ + + κ
 (39)

and changing the parameterization one obtains, 

( ) 1
1 ( ) 1

G j
jG j a

a

κ ω κ⎛ ⎞= ⋅⎜ ⎟ ω+ κ ω κ +⎝ ⎠ +
κ +

 (40)

From the previous equation one can conclude that, since ( )aκ κ+  is less than 

unity, the magnitude of frequency response never crosses the line of 0dB. So 

there are not resonance peaks for first-order systems.  

[ proof ] that the open-loop gain crossover frequency is gcω = κ . 

Using the Bode plots for, 

( )
1( )

1
G j

a j a
κ⎛ ⎞κ ω = ⋅⎜ ⎟ ω +⎝ ⎠

 

One gets the following asymptotic outline: 

 

Since between a  and gcω  there are ( )10log gc aω  decades, the attenuation over 

the frequency a  is therefore ( )1020 log gc a− ⋅ ω . It is known that for gcω = ω  the 

magnitude is 0dB hence, 

( ) ( )10 1020 log 20 log 0gca a⋅ κ − ⋅ ω =  

which implies that gcω = κ . 

 

Additionally, and relatively to the open-loop system, there is an increase in 

bandwidth. For high gain values, the bandwidth of the closed loop is 

approximately equal to the gain crossover frequency. This statement is 

validated by the following figure. 
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Fig 11. Absolute and relative error of approximation cl gcBW ω≈  

It thus appears that the approach cl gcBW ω≈  is valid, within a tolerance of ± 1%, 

for DC open loop gains higher than 40dB. That is, if the gain is 100 times the 

pole module, the relationship in question remains within the defined limit. Note, 

however, that for lower values, the error of this approach can be quite high. For 

the simulated cases a relative error around 45% was obtained for a relative gain 

of 2, i.e. 2a =κ . 

1.1.10 Closed-loop second order systems 

Consider the 2nd order system (causal and stable) in standard form: 

2

2 2( )
2

n

n n

G s
s s

κω
κ =

+ ζω +ω
 (41)

The transfer function under closed-loop unity feedback is: 

( )
2 2

22 2 2 2

( )
1 ( ) 2 2 1

n n

n n n n n

G s
G s s s s s

κω κωκ
= =

+ κ + ζω +ω + κω + ζω + ω + κ
 (42)

which can be rewritten as 

2 2

2 2 2 2

( )
1 ( ) 2 2

n cl ncl

n ncl cl ncl ncl

G s
G s s s s s

κω κ ωκ
= =

+ κ + ζω +ω + ζ ω +ω
 (43)
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where 

1ncl nω = ω κ+  (44)

1cl
ζ

ζ =
κ +

 (45)

1cl
κ

κ =
κ +

 (46)

 From expression (43) it follows that the system closed-loop bandwidth is 

higher than the open-loop bandwidth ( cl nclBW ≈ ω ). 

 By (44) one concludes that the closed-loop damping factor is lower than 

the open-loop damping one. So the overshoot will be higher. 

 And from (45) the closed loop gain is less than the open-loop gain and 

less than one. 

[ note ] 

For high values of κ , the gain crossover frequency ( gcω ) is approximately equal 

to the undamped natural frequency of the closed loop, i.e. gc nclω ≈ ω . More 

specifically the approach is valid, with an error below 10%, for values of 10κ >  

and 1ζ <  as illustrated in the following figure. 
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[ note ] 
As noted earlier, there is a close relationship between phase margin and the 

closed loop damping ratio. An approximate relationship is given by the following 

formula [14]: 

( )12 sin−≈ ⋅ ζm clP          (1) 

Another approach for phase margins less than 70 °, consists of [6] 

100
m

cl
P

ζ ≈
(in degrees)     (2) 

The following figure illustrates the quality of each approximation. 

 

It appears that for gain values below 3, the mean relative error increases 

exponentially. Moreover, it is observed that the approach by (1) only produces 

satisfactory results for gains between 3 and 10. From this point forward it is 

advisable to use the relation (2). 

1.1.11 Open-loop vs. closed-loop response 

The classical design and analysis techniques use the open-loop system 

response and try to predict his closed loop behaviour. Even if only a rude 

approximation of the closed-loop behaviour can be obtained from the open-loop 

transfer function, the following rules can be taken into account as an aid in 

control systems design. 
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In this framework, consider a system with direct transfer function ( )DG s . By 

evaluating ( )DG s  along the axis jω  one obtain the direct frequency response 

( )DG jω . In closed loop, and taking into consideration the feedback transfer 

function ( )H s , the frequency response will be: 

( ) ( )( )
1 ( ) ( ) 1 ( )

D D
CL

D OL

G j G jG j
G j H j G j

ω ω
ω = =

+ ω ω + ω
 (47)

For values of ( ) 1OLG jω , 

( )( ) 1 1( )
( ) ( ) ( ) ( )

j H jD
CL

D

G jG j e
G j H j H j H j

− ωω
ω ≈ = =

ω ω ω ω
 (48)

It appears then that for high magnitude values of the open loop transfer 

function, the closed loop frequency response has its magnitude approximately 

equal to the inverse feedback transfer function and phase with opposite sign. In 

the particular case of unity feedback ( ( ) 1H jω = ) the closed loop frequency 

response magnitude is approximately constant and equal to 0dB. The phase is 

also constant and equal to 0 º. 

On the other hand, for values ( ) 1OLG jω , 

( ) ( )CL DG j G jω ≈ ω  (49)

In this case the closed loop frequency response is approximately equal to the 

direct frequency response (both magnitude and phase).  

In the vicinity of the gain crossover frequency, (for ( ) 1OLG jω ≈ ) the closed loop 

frequency response magnitude strongly depends on the phase margin. Due to 

this fact, the relationship between the gain crossover frequency and closed-loop 

bandwidth mismatches. This discrepancy increases when the closed-loop zeta 

decreases. Thus, as a rule-of-thumb, one can say that the bandwidth of the 

closed loop is usually within one to two times the gain crossover frequency,  

2gc CL gcBWω ≤ ≤ ⋅ω  (50)

An useful heuristic for control systems design is to consider the bandwidth 

equal to the gain crossover frequency in case of a phase margin of 90º or a 

bandwidth twice the gain crossover frequency if the system has an open loop 

phase margin of 45º [6]. That is, 
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90ºCL gc Pm
BW

=
= ω  or 

45º
2CL gc Pm

BW
=

= ω  (51)

1.2 Control Systems Design 

In this section some classical controller design techniques are reviewed. Please 

note that we are concerned in analog controller design for linear, time-invariant, 

causal and minimum phase systems. The techniques addressed are based into 

two distinct graphical approaches: the root locus and the Bode plots. Both 

techniques have substantial differences when compared. Besides the fact that 

the former is a time-domain analysis and design technique and the later a 

frequency domain approach, there are one major difference among them: the 

root-locus design procedure requires the knowledge of the system pole-zero 

location (i.e. a satisfactory process model must be known). On the other hand a 

Bode plot can be obtained experimentally and then be used for analysis and 

synthesis. 

[ note ] Please note once again that the controller classical design techniques 

are based on the open-loop transfer function in order to predict the 

closed-loop system response. 

1.2.1 The root-locus 

The root locus shows the location of the closed-loop poles as a function of a 

given transfer function parameter variation (usually, but not exclusively, the 

gain). Besides the possibility of determining the stability and relative stability in 

closed loop, the root locus is also a common controller design tool [4] [10]. 

1.2.2 Bode diagrams 

In control systems, Bode plots can be used for various purposes including the 

determination the values for of some figures-of-merit and for controller design. 

In the control system design framework there are two types of Bode diagrams: 

open-loop and closed-loop. Open-loop diagrams can be use to: 

 Determine relative stability margins; 

 Determine the system type (noting the slope of the frequency response); 

 Controller design: Due to the diagrams addictive nature, the association 
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effect of a given compensator to the system can be easily determined. 

On the other hand, closed-loop diagrams can be used to: 

 Determine the bandwidth (a measure of system response and noise 

immunity); 

 To determine the relative stability (the resonance peak in the Bode plot of 

closed loop is a reliable indicator of relative stability). 

1.2.3 Controllers Types 

At present time, there are a myriad of different type of controllers. Some of them 

are used in the industry and in our everyday life machines. Most of them are still 

in the theoretical domain and live in books and conference papers. Due to the 

time constraint imposed by the present curricular unit, only a brief treatment on 

a reduced number of controller strategies will be taken. Two classical control 

strategies, the PID and the Lead/Lag controller, will be addressed. 

 

PID stands for proportional-integral-derivative and are the most common 

controller type in the process industry. With three degrees of freedom, this 

controller is able to meet most of the closed loop specifications (e.g., gain and 

phase margins or steady-state error). The PID has the following standard 

transfer function: 

( ) i
P d

KK s K K s
s

= + +   

where PK , dK  and iK  are the proportional, derivative and integral coefficients 

respectively. As one can see, the PID transfer function contributes with two 

zeros and a pole at the origin.  

 

On the other hand, a lead/lag controller only has one zero and one pole. The 

canonical transfer function of such controller has the following structure: 

1( )
1

aTsK s
Ts

+
= κ

+
  

where the controller is of lag type if 1a >  and of lead type if 1a < . 

Besides these two controller types, an alternative algebraic method is also 

presented. This method, denoted by unity feedback controller (UFC), consists 
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on an open-loop transfer function pole placement strategy. In order to use this 

method one must know where to put the closed-loop transfer function poles. 

1.2.4 Controller design by pole-placement 

Once again, the main control system objective is to reshape the natural system 

behaviour in order to obtain a new one, developed around the original, capable 

of meeting the desired design constraints. As can be imagined, there are many 

ways to do this task. The usual and basic strategy involves information 

feedback.  

So, consider the following unity feedback system: 

 

Fig 12. Closed-loop control system with unity feedback. 

Taking into consideration the system transfer function ( ) ( ) ( )G s N s D s=  and the 

compensator transfer function ( ) ( ) ( )K s B s A s= , the aim of the control system is 

to make the dynamic behaviour of the closed-loop transfer function close to the 

desired one. Let ( ) ( ) ( )CLG s P s Q s= be the desired closed-loop transfer function. 

Since the plant transfer function is considered fixed (otherwise any change may 

involve the physical alteration of the plant) the closed-loop dynamic is tuned by 

selecting a proper controller transfer function. 

The closed loop transfer function of the system shown in figure 12 is: 

( ) ( ) ( ) ( )( )
1 ( ) ( ) ( ) ( ) ( ) ( )CL

G s K s B s N sG s
G s K s A s D s B s N s

= =
+ +

  

and, since we want the system to display the behaviour dictated by the transfer 

function ( )CLG s , then the following relationship must be verified: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

B s N s P s
A s D s B s N s Q s

=
+

  

which leads to the following pair of project equations: 
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( ) ( ) ( )N s A s P s=  (52)
and 

( ) ( ) ( ) ( ) ( )A s D s B s N s Q s+ =  (53)

Please note that the closed-loop transfer function numerator, ( ) ( )N s B s  cannot 

be changed. This is because ( )N s  is intrinsic to the plant and ( )B s  depends on 

equation {52} solution. Thus, using this project strategy, only the pole’s position 

can be controlled. Thus, since the location of zeros also contributes to the 

system dynamic behaviour (e.g. the error in steady state) in general one cannot 

validate all the constraints imposed initially. 

Since, as already mentioned before, the original system dynamics is considered 

unchangeable, equation {52} is of the type, 

a X b Y c⋅ + ⋅ =  (54)

known, in number theory, as the Diophantine equation. Thus, the objective of 

this technique is then proposed for solving a polynomial equation. 

Note that often the Diophantine equation solution is not unique. Moreover, 

sometimes, the final design results in improper and physically impossible 

controller. However, it is possible to guarantee the existence of a proper 

controller if the following condition is verified: 

If the system is of order n , strictly proper and irreducible, then there exists a 

controller of order 1n−  for a order 2 1n−  characteristic polynomial ( )Q s . 

The general solution of Diophantine equation is presented by below taking into 

consideration the following transfer function expressions for both process and 

controller, 
1

1 0
1

1 0

( )
n n

n n
n n

n n

N s N s NG s
D s D s D

−
−

−
−

+ + +
=

+ + +
 (55)

 

1 2
1 2 0

1 2
1 2 0

( )
n n

n n
n n

n n

B s B s BK s
A s A s A

− −
− −

− −
− −

+ + +
=

+ + +
 (56)

and assuming a closed-loop characteristic polynomial of the form: 
2 1

2 1 1 0( ) n
nQ s R s R s R−
−= + + +  (57)

Multiplying the appropriate terms and equating the coefficients of identical 
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powers leads to the following set of matrix equations, 

( , )S N D X R⋅ =  (58)

where 

0 0

1 1 0 0

1 1

0 0

1 1

0 0 0 0

0 0
( , )

0 0

0 0 0 0

n n

n n

n n

D N
D N D N

D N
S N D D N D N

D N D N

D N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (59)

is called the Sylvester matrix and has order 2n . On the other hand X  and R  

are vectors with the following format: 

[ ]0 0 1 1 1 1
T

n nX A B A B A B− −=  (60)
 

[ ]0 1 2 3 2 2 2 1
T

n nR R R R R R R− −=  (61)

Finally, the controller transfer function coefficients are obtained by solving the 

matrix equation, 
1( , )X S N D R−=  (62)

1.2.5 Tuning PID Controllers 

In this section some control PID tuning techniques are presented. The first is an 

empirical method based on the free or forced system response. In addition, an 

analytical tuning method similar to the pole-placement, is reviewed in section 

§1.2.4. Frequency response based methods are also possible and will be 

addressed in some proposed exercises. 

1.2.5.1 Ziegler and Nichols method 

One method for tuning PID controller uses a set of empirical rules proposed in 

1942 by Ziegler and Nichols. From the open-loop system step response, or 

evaluating the system closed-loop response at the edge of instability, was 

possible to derive a set of heuristics for easy tuning of a three degrees-of-

freedom controller. However it should be noted that, although simple, a 

controller tuned by this method cannot achieve system closed-loop behaviour 

able to meet specific requirements (e.g. overshooting, settling time and so on). 
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However, its main advantage lays in the fact that a system mathematical model 

it is not necessary for the design process (as opposed to most techniques). 

Taking into consideration Ziegler and Nichols work one presents two different 

tuning controllers rules for stable systems. 

1.2.5.1.1 Reaction Curve Method 

The first technique follows from the open-loop system step response. In case 

the step response can be approximated to a first order system, with pure delay 

in the time, we get the following relevant variables: 

 Slope of the tangent at the inflection point of the response; 

 Interception of this tangent with the axis of time. 

As can be seen in figure 13, the slope of the tangent is obtained from m K= τ  

and the time delay dt  from the point where the line crosses the time axis. 

 

Fig 13. Reaction-curve tuning procedure. 

Using this values, and based on the table below, the controller parameters are 

tuned. 

 Kp Ki Kd 
P ( )1 dm t⋅    

PI ( )0.9 dm t⋅ 0.3 P dK t   

PID ( )1.2 dm t⋅ ( )2P dK t⋅  0.5 P dK t⋅ ⋅  

Tabela 2. Ziegler-Nichols tuning rules for the reaction curve method. 

It should be noted that the criteria defined in the tuning table normally lead to a 
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¼ decay. The same is to say that the closed-loop transient response magnitude 

decays to 25% after a period of oscillation. This performance criterion implies a 

closed-loop zeta approximately equal to 0.22 which can be considered a good 

compromise between speed of response and adequate stability margins. 

[ note ] 

The poles of a canonical second order system are located at n ds j= −ζω ± ω . 

Thus the system impulse response has the following appearance: 
2

( ) sin( )ntn
d

d

h t e t−ζωω
= ⋅ ω
ω

 

As one can see the transient component decays exponentially. For the 

sinusoidal component attenuation to be 25% after a period it is necessary that 

2

22
11 0.25 0.25 0.25

4
n

n n dt T

t T
e e e e

ζ ππ −−ζω
−ζ−ζω −ζω ω

=
= ⇒ = ⇒ = ⇒ =  

solving in order to zeta one gets the solution 0.2155ζ ≈ . 

1.2.5.1.2 Sensitivity Limit Method 

In this second method, the parameters adjustment criterion is based on the 

system evaluation at the stability limit. More specifically, for the particular case 

of an asymptotically stable system in the region 0 CK≤ κ ≤ , the following tuning 

rules are specified: 

 Kp Ki Kd 
P 0.5 CK⋅    
PI 0.45 CK⋅  0.6 P CK ω π   
PID 0.6 CK⋅  P CK ω π  ( )4P CK π ⋅ω  

Tabela 3. Ziegler-Nichols PID tuning rules 

Where CK  refers to the critical gain and Cω  the oscillation frequency (imaginary 

part of the closed-loop poles for CKκ = ). If a model is available, the values for 

CK  and Cω  can be algebraically determined by the Routh stability criterion. 

Other approaches can be used. For example the root-locus or the Bode plots 

are two tools that enable us to find both the critical gain and critical frequency. 

In the root-locus one searches for the gain that places the closed-loop poles 
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over the imaginary axis. This value refers to the critical gains. The pole vector 

magnitude at this point defines the oscillation frequency. 

[ note ] Routh stability criterion 

The Routh stability criterion is a method for finding the existence of poles in the 

right half-plane and can be applied to systems such as: 
1

1 0
1

1 0

( )
m m

m m
n n

n n

b s b s bG s
a s a s a

−
−

−
−

+ + +
=

+ + +
 

The stability is analyzed from the characteristic equation: 
1

1 0 0n n
n na s a s a−

−+ + + =  

The criterion is applied by constructing a table or matrix of the form: 
ns  na  2na −  4na −   

1ns −  1na −  3na −  5na −   

 1α  2α  3α   

 1β  1β  1β   

where 1 2 3 1 4 5
1 2

1 1

, ,n n n n n n n n

n n

a a a a a a a a
a a

− − − − − −

− −

− −
α = α =  

and 1 3 1 2 1 5 1 3
1 2

1 1

, ,n n n na a a a− − − −α − α α − α
β = β =

α α
 

All the characteristic equation roots have negative values if, and only if, the 

Routh’s first column elements have all the same sign. Otherwise, the number of 

roots with positive real parts is equals to the number of sign changes. 

Obs1: A row of zeros associated to the line s  indicates that the polynomial has 

a pair of roots that satisfy the auxiliary equation 2 0A s B⋅ + =  where A  

and B  are the first and second elements of the row 2s . 

Obs2: If any of the elements of the first column is zero (except the last) the zero 

is replaced by an infinitesimal amount ε . This amount is used for 

computing subsequent factors. 

On the other hand, using the Bode diagrams, one can find the critical gain value 

as the one that makes the system gain margin equal to zero. The critical 

frequency is the crossover phase frequency. 
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1.2.5.2 Bode diagrams controller design 

An alternative design way of PID controllers is based on the open loop system 

frequency response outline. Due to the addictive behaviour of Bode plots, and 

knowing both the open-loop frequency response and desired close-loop 

frequency response, it is often possible to find out, in an expeditious way, the 

controller coefficients. 

For Bode plot controller design, an alternative controller transfer function 

parameterization is used. The transfer function has now the following structure: 

2
1 2

1 1
( )

i
d p i

s sK
K s K s K

K s
s s

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟+ + ω ω⎝ ⎠⎝ ⎠= =  

(63)

where 

1 2

i i
p

K KK = +
ω ω

 (64)

and 

1 2

i
d

KK =
ω ω

 (65)

[ proof ] 
2 2

( ) d p i p d i d
d

K s K s K s K K s K K
K s K

s s
+ + + +

= =  

The roots of the numerator are: 

( )
( )

2
1

2
2

1 4
2

1 4
2

p p i d
d

p p i d
d

s K K K K
K

s K K K K
K

⎧ = − + − = −ω⎪⎪
⎨
⎪ = − − − = −ω
⎪⎩

 

so ( )K s  can be rewritten as follows: 

( )( )1 2( ) d

s s
K s K

s
+ω +ω

= , I.e. 

1 2
1 2

1 1
( ) d

s s

K s K
s

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟ω ω⎝ ⎠⎝ ⎠= ω ω  

The product 1 2ω ω  is: 

( ) ( )2 2
1 2

1 14 4
2 2p p i d p p i d

d d

K K K K K K K K
K K

⎡ ⎤ ⎡ ⎤
ω ⋅ω = + − ⋅ − − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
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( )( ) ( )2 2
2 2

1 14 4
4 4

i
p p i d i d

d d d

KK K K K K K
K K K

= − − = =  

hence, 

1 2

1 1
( ) i

s s

K s K
s

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟ω ω⎝ ⎠⎝ ⎠=   

It is easy to see that the constant pK  and dK  can be taken from the values of 

the variables 1ω , 2ω  and iK  as follows: 

1 2

i
d

KK =
ω ω

 and 1 2

1 2
p iK K ω +ω
=

ω ω
 

1.2.5.3 Analytical design strategy 

By knowing the following performance criteria: 

 Steady state error; 

 Bandwidth; 

 Phase margin. 

an analytical PID controller design technique can be derived. 

The phase margin can be derived, for example, by knowing the maximum 

allowable overshoot and the bandwidth can be indirectly inferred by the settling 

time. 

To illustrate the procedure consider the open loop transfer function of a system 

controlled by a PID (for a unity feedback loop): 

( ) ( )i
OL p d

KG s K K s G s
s

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (66)

If case of a type p  system, the compensated system is of type 1p +  (due to the 

additional pole at the origin added by the controller). From section § 1.1.8.2 one 

already knows that the error constant is equal to the steady-state error inverse 

and is given by: 
2

1
1 0 0

1lim ( ) lim ( )p d ip p
p is s

ss

K s K s K
K s G s s K G s

s e
+

+ → →

⎛ ⎞+ +
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
 (67)

Thus, for a given steady state error, one of the controller parameter is 

immediately obtained: the integral constant iK  
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It has been said earlier that the closed-loop natural frequency corresponds to 

the open-loop gain crossover frequency. It is also known that the phase margin 

can be obtained from the closed loop damping coefficient. Thus, for the 

frequency gcω = ω , the compensator must have unity gain and phase equal to 

180º
gc mPω=ωθ = − . 

Resulting from these facts, and since the integral constant is known, the 

following equality can be written [14]: 

( ) 1 gcji
p gc d gc

gc

KK j K G j e
j

ω=ωθ⎛ ⎞
+ ω + ω =⎜ ⎟⎜ ⎟ω⎝ ⎠

 (68)

i.e., 

1
( )

gcj
i

p gc d
gc gc

KeK j K j
G j

ω=ωθ

+ ω = +
ω ω

 (69)

which leads to that 

1Re
( )

gcj
i

p
gc gc

KeK j
G j

ω=ωθ⎧ ⎫⎪ ⎪= +⎨ ⎬ω ω⎪ ⎪⎩ ⎭
 and 1 1Im

( )

gcj
i

d
gc gc gc

KeK j
G j

ω=ωθ⎧ ⎫⎪ ⎪= + ⋅⎨ ⎬ω ω ω⎪ ⎪⎩ ⎭
 (70)

1.2.6 Lead/Lag controller design strategies 

One of the simplest forms of a compensator is just a filter with one pole and one 

zero. In this context two basic controller types will be reviewed: the phase lead 

and the phase lag controller. 

A lead controller, as its name implies, add positive phase to the system. On the 

other hand a lag controller add negative phase to the system. The controller 

type choice is application specific. However, usually, a phase advance 

controller is used in situations where an increase in bandwidth and phase 

margin is needed. On the other hand, a lag controller has an opposite effect: 

tends to decrease the bandwidth but increasing the steady state performance. 

1.2.6.1 Phase-lead controllers 

A phase lead controller has the following effects on the control system 

behaviour: 

 Increase of relative stability by increasing the phase margin; 
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 Increasing the bandwidth; 

 Increase the steady-state error; 

 Increased time response; 

 Reduction of overshoot (higher zeta) 

 Poor noise immunity. 

1.2.6.1.1 Design strategy: Bode diagrams 

Consider the transfer function of a lead compensator parameterized as follows: 

1( ) , 1
1

aTsK s a
Ts

+
= κ >

+
 (71)

for s j= ω  one obtain, 

1( ) ( ) ( )
1

j aTK j K j K j
j T
ω +

ω = κ = ω ∠ ω
ω +

  

The controller provides a phase advance that can be computed by: 

( ) ( )1 1( ) tan tanK j aT T− −∠ ω = Φ = ω − ω  (72)

The frequency, at which the phase advance is maximal, can be calculated by 

solving the following equation: 

( ) ( )( )1 1tan tan 0MAX
d aT T

d
− −Φ = ω − ω =

ω
  

leading to 

( ) ( )( )
( ) ( )

1 1
2 2tan tan 0

1 1
d aT TaT T

d aT T
− −ω − ω = − =

ω + ω + ω
  

For the above equation to be zero it is necessary that 

( ) ( )2 21 1 0aT T T aT⎡ ⎤ ⎡ ⎤⋅ + ω − ⋅ + ω =⎣ ⎦ ⎣ ⎦   

so, 

3 2 2 3 2 0aT aT T a T+ ω − − ω = ⇒  
( ) ( )3 2 1 1aT a T aω − = − ⇒  

2
2

1
aT

ω =  
 

and thus  
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1
T a

ω=  (73)

Thus the frequency at which the phase advance is maximal, occurs at: 

1
T a Φω = = ω   

the phase advance, at Φω , is maximal and its value is equal to: 

( )1 1 1tan tanMAX a
a

− − ⎛ ⎞
Φ = − ⎜ ⎟

⎝ ⎠
 (74)

leading to 

( ) 1sin
1MAX

a
a
−

Φ =
+

  

and ultimately, to the value of constant a  regarding the maximum phase 

advance: 

1 sin( )
1 sin( )

MAX

MAX

a + Φ
=

− Φ
 (75)

[ proof ] 
 

Consider the following equality: 

( )1 1 1tan tanMAX a
a

− − ⎛ ⎞
Φ = − = θ−ϕ = λ⎜ ⎟

⎝ ⎠
. 

Geometrically, the expression has the following aspect: 

 
Note: tan( ) y

x
τ =  

Form the vector calculus theory one knows that the inner product between two 

vectors 1 2, , , na a a a=< >  and 1 2, , nb b b b=< >  is given by: 

1 1 2 2 cos( )n na b a b a b a b a b⋅ = + + + = ⋅ ⋅ ε  

where ε  refers to the angle formed by the two vectors and 2 2 2
1 2 na a a a= + +  
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and 2 2 2
1 2 nb b b b= + +  refers to the absolute value of the vectors a  and b  

respectively. 

So it is easy to verify that 

,1 1, 2cos( )
11 1,1 1,

a a a a a
aa aa a

< > ⋅ < > +
λ = = =

++ ⋅ +< > ⋅ < >
 

By the fundamental theorem of trigonometry, 

2 2cos( ) 1 sin ( )
1

a
a

λ = − λ =
+

  

so, 

( ) ( )
( )
( )

22

2 2 2

14 1 2 1sin( ) 1
11 1 1

aa a a a
aa a a

−− + −
λ = − = = =

++ + +
 

1 sin( )1 sin( )1 ( 1) sin( )
1 sin( ) 1 sin( )MAX

MAX

MAX

a a a a
λ=Φ

+ Φ+ λ
− = + ⋅ λ ⇒ = → =

− λ − Φ
 

 

[ alternative proof ]  

Taking into consideration that 

( )1 11tan tan
2

a
a

− −π⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 one get the following equality: 

( )1 1 1tan tanMAX a
a

− − ⎛ ⎞
Φ = − ⎜ ⎟

⎝ ⎠
, ( ) ( )1 1tan tan

2MAX a a− −π
Φ = − +  

( )11 tan
2 2MAX a−π⎛ ⎞⎛ ⎞Φ + =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

1tan
2 2MAX a⎛ ⎞π⎛ ⎞⎛ ⎞Φ + =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 which implies that 2 1tan

2 2MAXa ⎛ ⎞π⎛ ⎞⎛ ⎞= Φ +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. Thus, 

( )( )
( )( )

( )
( )

2 2
sin 0.5 0.5 sin(0.5 ) cos(0.5 )

cos(0.5 ) sin(0.5 )cos 0.5 0.5
MAX MAX MAX

MAX MAXMAX

a
⎛ ⎞⋅ Φ + π ⎛ ⎞⋅Φ + ⋅Φ

= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⋅Φ − ⋅Φ⋅ Φ + π ⎝ ⎠⎝ ⎠
 

2 2

2 2

sin (0.5 ) cos (0.5 ) 2 sin(0.5 ) cos(0.5 )
cos (0.5 ) 2 sin(0.5 ) cos(0.5 ) sin (0.5 )

MAX MAX MAX MAX

MAX MAX MAX MAX

a
⎛ ⎞⋅Φ + ⋅Φ + ⋅ ⋅Φ ⋅ ⋅Φ

= ⎜ ⎟⋅Φ − ⋅ ⋅Φ ⋅ ⋅Φ + ⋅Φ⎝ ⎠
 

( )
( )

1 sin1 2 sin(0.5 ) cos(0.5 )
1 2 sin(0.5 ) cos(0.5 )) 1 sin

MAXMAX MAX

MAX MAX MAX

a
+ Φ⎛ ⎞+ ⋅ ⋅Φ ⋅ ⋅Φ

= =⎜ ⎟− ⋅ ⋅Φ ⋅ ⋅Φ − Φ⎝ ⎠
 

The additional gain contribution, from the transient component, at frequency 

Φω = ω  is: 
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10
1 120log

1 1dB

dB

j aT j aTM M
j T j T

Φ Φ

Φ Φ

⎛ ⎞ω + ω +
= ⇔ = ⎜ ⎟⎜ ⎟ω + ω +⎝ ⎠

  

( )10 10 100.5

1 120log 20log 1 20log
1dB

dB

j a aM a
ja a−

⎛ ⎞ ⎛ ⎞+ +
= = + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

  

in other words 

( )10 10 10
110log 1 10log 10log ( )dB

aM a a
a
+⎛ ⎞= + − =⎜ ⎟

⎝ ⎠
 (76)

Using the above derived equations a design procedure is systematized by the 

following seven steps [14]. 

[ note ] With this algorithm is not possible to specify the gain crossover 

frequency. 

Algorithm: 

Step 1 of 7: Calculate the gain κ  so the error constant has the desired 

value 

Step 2 of 7: Draw the Bode plot of ( )G jκ ω  and find the phase margin. 

Step 3 of 7: Compute the amount of phase lead necessary Φ  and add to 

it five or ten degrees (security margin). 

Step 4 of 7: Find the value of a  from the expression 1 sin( )
1 sin( )

a + Φ
=

− Φ
  

[ note ] The practical limit to a  is 10 which is equivalent to a maximum phase 

increase of 55º. 

Step 5 of 7: Search for the frequency at which the gain is 

10( ) 10 log ( )
dB

G j aκ ω = − ⋅ . The value of this frequency will be 

the gain crossover frequency. 

 

[ note ] The phase advance, for each zero, should not be higher than 45 ° so 

that its position does not significantly interfere with the frequency 

response magnitude by changing the gain crossover frequency gcω . 
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[ note ] Relationship between attenuation and phase advance. 

For a phase advance between 0º and 55º, the ratio between the signal 

amplification (due to the controller) and the phase advance has, in dB, the 

following aspect 

 
If we compare the result profile with a line through the origin it can be said that, 

for an error lower than 0.85dB (0.25dB between 0º and 45º), the attenuation to 

consider in the design algorithm is approximately 1/6 of the phase lead (in 

degrees) needed. 

Step 6 of 7: Calculate T  from 1

gc

T
a

=
ω

 

Step 7 of 7: Draw the Bode plots for ( ) ( )K j G jω ω  to confirm the design 

constraints. One should also simulate the response of the 

closed-loop system 

1.2.6.1.2 Design Strategy: By analytic manipulation 

Just like was done for the PID controller, another lead controller tuning strategy 

can be obtained analytically. Consider a system, with transfer function ( )G s , in 

series with a phase lead controller with transfer function: 

1( )
1

aTsK s
Ts

+
= κ

+
  

Consider also that the system must have, in closed loop, a steady-state error 
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less than or equal to δ  and a bandwidth cω . In addition, the phase margin must 

be equal to mP  degrees. 

From the first specification, and depending on the order of the polynomial type 

input signal (step, ramp or parabola), the gain κ  is obtained from the final-value 

theorem. For example if the input is a step and the system is type 0 then 

1
1 PK

ε = ≤ δ
+

  

where 

0 0
lim ( ) ( ) lim ( )P s s

K K s G s G s
→ →

= = κ ⋅   

so 

0

1
lim ( )
s

G s
→

−δ
κ ≥

δ⋅
  

Parameters a  and T  are obtained from the other performance criteria. 

Considering that the bandwidth is approximately equal to the gain crossover 

frequency then, at frequency gc cω = ω = ω , the system should exhibit a phase 

equal to 180Pmφ = − . Therefore, 

@
( ) ( )

c

jK j G j e φ
ω=ω

ω ω =   

Considering that, at the frequency cω = ω  the system magnitude and phase are 

( )G j Mω =  and ( )G jω = θ  then 

@ @
( ) ( ) ( )

c c

j jK j G j K j M e eθ φ
ω=ω ω=ω

ω ω = ω ⋅ =   

i.e., 

( )
@

1( )
c

jK j e
M

φ−θ

ω=ω
ω =   

Because, 

1( )
1

jaTK j
jT

ω+
ω = κ

ω+
  

then 

( )
@

1 1( )
1c

jc

c

jaTK j e
jT M

φ−θ

ω=ω

ω +
ω = κ =

ω +
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or 

( ) ( )1801 1 1
1

j j Pmc

c

jaT e e
jT M M

φ−θ − −θω +
= =

ω + κ ⋅ κ ⋅
  

Solving the above equation one gets: 

( ) ( )
( )

cos 1
cos

M Pm
a

M M Pm

⎛ ⎞κ ⋅ − θ +
= −⎜ ⎟

⎜ ⎟⎡ ⎤κ ⋅ κ ⋅ + − θ⎣ ⎦⎝ ⎠
 and ( )

( )
cos

sinc

M Pm
T

Pm
κ ⋅ + − θ

=
ω −θ

  

or, 

( ) ( )
( )

cos 1
sinc

M Pm
aT

M Pm
⎛ ⎞κ ⋅ − θ +

= −⎜ ⎟⎜ ⎟κ ⋅ ⋅ω −θ⎝ ⎠
 and ( )

( )
cos

sinc

M Pm
T

Pm
κ ⋅ + − θ

=
ω −θ

 (77)

[ proof ] 

( )1801 1
1

j Pmc

c

jaT e
jT M

− −θω +
=

ω + κ ⋅
 multiplying the left term by the conjugate and 

applying Euler's identity to the right term one obtain: 

( )( )
( )

( ) ( )( )2

1 1 1 cos 180 sin 180
1

c c

c

jaT jT
Pm j Pm

MT

ω + − ω +
= − −θ + − −θ
κ ⋅ω +

 

( ) ( )
( )

( ) ( )( )
2

2

1 1 1 cos 180 sin 180
1

c c

c

a T jT a
Pm j Pm

MT

+ ω + ω −
= − −θ + − −θ
κ ⋅ω +

 

Separating the real from the imaginary part we have that: 

( )
( )

( ) ( )
2

2

1 1 1cos 180 cos
1

c

c

a T
Pm Pm

M MT

+ ω
= − −θ = − −θ
κ ⋅ κ ⋅ω +

     (1) 

( )
( )

( ) ( )2

1 1 1sin 180 sin
1

c

c

T a
Pm Pm

M MT

ω −
= − −θ = − −θ
κ ⋅ κ ⋅ω +

        (2) 

Solving (1) in order to a  

( )
( ) ( )

( )
2

2 2

1 1cos 1c
c c

a Pm T
M T T

⎡ ⎤= − −θ ω + −⎣ ⎦κ ⋅ ω ω
                 (3) 

Substituting (3) in (2) and simplifying one gets: 

( )
( )

( )
( )

( ) ( )2 2
2 2

cos sin11 1 1c c
cc c

Pm Pm
T T

M TM T T

−θ −θ⎡ ⎤ ⎡ ⎤− ω + − = − ω + +⎣ ⎦ ⎣ ⎦κ ⋅ ⋅ ωκ ⋅ ω ω
 

( )
( )

( ) ( )
( )

( ) ( )
( )

2
2 2

2 2 2

cos sin 1
1 1c c

c c
c c c

Pm T Pm T
T T

M T M T T

⎛ ⎞− θ ω ⋅ − θ ω +⎡ ⎤ ⎡ ⎤ ⎜ ⎟ω + − ω + = −⎣ ⎦ ⎣ ⎦ ⎜ ⎟κ ⋅ ω κ ⋅ ω ω⎝ ⎠
 

( )
( )

( ) ( ) ( )
( )

2 2

2 2

1 1
cos sinc c

c
c c

T T
Pm T Pm

M T T

⎛ ⎞ω + ω +
⎜ ⎟⎡ ⎤− θ − ω −θ = −⎣ ⎦ ⎜ ⎟κ ⋅ ω ω⎝ ⎠
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( )
( )

cos
sinc

M Pm
T

Pm
κ ⋅ + − θ

=
ω −θ

 

Substituting this last result in (3), 

( )
( ) ( )

( )
2

2 2

1 1cos 1c
c c

a Pm T
M T T

⎡ ⎤= − −θ ω + −⎣ ⎦κ ⋅ ω ω

( ) ( )
( )2

cos cos 1

c

Pm Pm M
a

M M T

⎛ ⎞⎛ ⎞− θ − θ + κ ⋅
⎜ ⎟= − − ⎜ ⎟⎜ ⎟κ ⋅ κ ⋅ ω⎝ ⎠⎝ ⎠

 

( ) ( ) ( )
( )

2 2

22

cos cos sin

cos
c

c

Pm Pm M Pm
a

M M M Pm

⎛ ⎞⎛ ⎞− θ −θ + κ ⋅ ω −θ⎜ ⎟= − −⎜ ⎟⎜ ⎟κ ⋅ κ ⋅ ⎡ ⎤ω κ ⋅ + −θ⎝ ⎠ ⎣ ⎦⎝ ⎠

 

( ) ( ) ( )
( )

2

2

cos cos sin

cos

Pm Pm M Pm
a

M M M Pm

⎛ ⎞⎛ ⎞− θ −θ + κ ⋅ − θ⎜ ⎟= − −⎜ ⎟⎜ ⎟κ ⋅ κ ⋅ ⎡ ⎤κ ⋅ + − θ⎝ ⎠ ⎣ ⎦⎝ ⎠

 

( ) ( )
( )

2cos sin
cos

Pm Pm
a

M M M Pm

⎛ ⎞− θ − θ
= − − ⎜ ⎟

⎜ ⎟κ ⋅ ⎡ ⎤κ ⋅ κ ⋅ + − θ⎣ ⎦⎝ ⎠
 

( ) ( ) ( ) ( )
( )

2 2cos cos sin
cos

M Pm Pm Pm
a

M M Pm

⎛ ⎞κ ⋅ − θ + −θ + −θ
= −⎜ ⎟

⎜ ⎟⎡ ⎤κ ⋅ κ ⋅ + − θ⎣ ⎦⎝ ⎠
 

( ) ( )
( )

cos 1
cos

M Pm
a

M M Pm

⎛ ⎞κ ⋅ − θ +
= −⎜ ⎟

⎜ ⎟⎡ ⎤κ ⋅ κ ⋅ + − θ⎣ ⎦⎝ ⎠
 

[ note ] For the controller to be stable it is necessary that T  is positive. 

Additionally, in order to ensure that the system is minimum phase, the 

value of aT  should also be positive. After some tests it was found that, 

using this strategy, the gain crossover frequency cannot be arbitrary 

chosen. In fact, the crossover frequency is restricted to the values that 

make the controller minimum phase. 

1.2.6.2 Phase lag Controllers 

A phase lag controller usually contributes for the following behavioural system 

changes: 

 Increase of relative stability by increasing the phase margin 

 Decrease the bandwidth 

 Decreased the steady-state error 

 Reduction of overshoot (higher zeta) 
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1.2.6.2.1 Design strategy: Bode plots 

Consider a phase lag controller transfer function parameterized as follows: 

1( ) , 1
1

aTsK s a
Ts

+
= κ <

+
 (78)

Just like what was done to the phase lead compensator, the gain constant is 

estimated in order to satisfy the steady-state error requirements. The 

parameters a  and T  are designed so that the required phase margin is met. 

For this type of controllers, the gain decreases with increasing frequency and 

the maximum gain reduction is ( )1020 log a⋅ . 

[ proof ] 

10
1lim 20 log ( )

1 dBs

aTs a a
Ts→∞

+
= ⇒ ⋅

+
 

Usually one defines, for design sake, that the minimum lag controller phase 

contribution occurs a decade ahead of the zero location, i.e. 

min 10 zφω = ⋅ω  (79)
 where 

1
z aT

ω =  (80)

leading to, 

min
10
aTφω =  (81)

Thus, once a  is selected, the variable T  is chosen so that the zero crossover 

frequency is away (toward the Bode diagram’s left) from the system critical 

frequency (otherwise the additional phase lag can destabilize the system).  

Just like for the phase lead controller, below is presented a set of steps that can 

be followed in order to design a lag controller [1]: 

Algorithm: 
Step 1 of 6: Calculate the gain κ  so that the error constant has the 

desired value 

Step 2 of 6: Sketch the Bode plot of ( )G jκ ω  

Step 3 of 6: If the phase margin is insufficient, one must estimate the 
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frequency value at which the phase margin is satisfied (add 

5º for safety). This frequency will be the desired gain 

crossover frequency ( gcω ) 

Step 4 of 6: Find the gain ( )
dB

G jΡ = κ ω  at the frequency gcω = ω . 

Compute a  from / 2010a −Ρ= . 

[ note ] The practical limit to a  is 0.1. To add more phase lag is necessary to 

cascade compensators. 

Step 5 of 6: To minimize the controller phase contribution one must 

estimate T  by 10

gc

T
a

=
ω

. 

Step 6 of 6: Confirm the final design by drawing the Bode plot of 

( ) ( )K j G jω ω . Also one must simulate the system closed-loop 

response. 

1.2.6.2.2 Design strategy: Analytically 

Another tuning strategy can be obtained by using some closed-form 

expressions just like it was done for the PID controller and for the phase lead 

controller. In fact, the strategy behind this method has much in common with the 

analytical technique used in the lead compensator design. Thus, considering a 

system with transfer function ( )G s  in series with a phase lag controller with 

transfer function: 

1( )
1

aTsK s
Ts

+
= κ

+
 with 1a <  (82)

and assuming that the system must have, in closed loop, a steady-state error 

less than or equal to δ , a bandwidth cω  and a phase margin of Pm  degrees 

than: 

( ) ( )
( )

cos 1
cos

M Pm
a

M M Pm

⎛ ⎞κ ⋅ − θ +
= −⎜ ⎟

⎜ ⎟⎡ ⎤κ ⋅ κ ⋅ + − θ⎣ ⎦⎝ ⎠
 (83)

and 

( )
( )

cos
sinc

M Pm
T

Pm
κ ⋅ + − θ

=
ω −θ

 (84)
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where M  and θ  refer to the gain and phase (in degrees) that the system 

displays at frequency cω . The gain κ  is obtained by the maximum allowable 

steady state error. 

[ note ] Since the analytical technique the poles and zeros time constants are 

obtained through the division by ( )sin Pm−θ , this method does not 

work if the sine argument approaches 180º. Hence, it is possible that a 

given set of performance criteria are not attainable with this method. In 

my point-of-view the sine argument must not be greater than, or equal 

to, 180º since, in this case, the sine function returns a negative number 

or zero. With negative values the controller are unstable or non-

minimum phase. 

 
[◄ CHAPTER 1] 
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2 Discrete-Time Control 
 

 

2.1 Sampling and Reconstruction 

. 

IGITAL control has to do with the replacement of the previously reviewed 

analog controllers by algorithms running on digital processors as computers, 

microcontrollers, DSP's or ASIC's. However, since the information signals 

typically presented in a control loop are analog (continuous in time), the addition 

of a digital controller requires an intermediate stage of signal discretization (A/D 

conversion). As we shall see later, in most cases there is also the need for 

reverse conversion. That is transforming a signal from the digital domain back 

to analog domain (an operation performed by D/A converters). The figures that 

follow are intended to illustrate what one has just said. The “switches” in figure 

15 represent the sampling process basic devices: the samplers 

 

Fig 14. Continuous controller. 

 

Fig 15. Digital controller. 

Chapter 

2 
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The signal digitalization step requires: 

 Signal sampling at time intervals T  usually regular (it is possible to have 

variable sampling rates). After this process, one gets a discrete-time signal 

but continuous in amplitude. However, digital processors can’t perform 

operations with infinite precision. Thus, the amplitude must also be 

discretized by a quantization operation. 

 The quantization of an analog input, to its digital counterpart, depends on 

the number of binary digits used (bits). For example, using a 10 bits 

quantization one can represent 1024 different levels. The approximation 

resolution is equal to one part in 1024 times de conversion reference 

amplitude. For example a 8 bit A/D converter with minimum and maximum 

reference conversion values equal to -1 and +1, has a resolution of 2/256 or 

1/128. If the signal amplitude does not match an integer multiple of the 

resolution, the quantization process drive, as output, the binary equivalent of 

the closest value to quantify. So the quantization process adds additional 

measurement error. The theoretical minimum error added is equal to half the 

least significant bit i.e. 1
2

LSB± . Figure 16 show the 2 bit quantization error 

effect for a ramp signal. 

 

Fig 16. Quantization error due to 2 bit A / D converter. 

The quantization phenomenon, as well as its control system effect, will be 

addressed further on, in section § 2.1.3. 
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Since a digital control system usually requires sampling operations, its 

understanding is of fundamental importance. For this reason the following 

section lays down the sampling process mathematical foundations. This 

knowledge is essential for digital control systems analysis and design. 

2.1.1 Process Sampling4 

Whenever a digital processor is involved, for measurement, signal processing 

or control, the data and systems involved are, in their nature, discrete-time. In 

this section we are particularly interested in discrete-time signals obtained by 

sampling, in time, an analog5 signal. This section purpose is to establish a 

mathematical model for the sampling process. This model will be useful in order 

to take into consideration possible closed-loop dynamics changes (compared to 

the analog one). In this framework consider the following figure: 

 

Fig 17. Figurative model of the ideal sampling process. 

Let’s imagine an analog electrical signal ( )e t  (for example a voltage) applied 

upstream to the previous figure switch. Consider also that the switch is pressed 

in regular time intervals 0, , , ,T nT , 0n∀ ∈  and during an infinitely small 

instant. At the switch downstream one predict the appearance of the theoretical 

signal with the appearance presented in the figure 18. 

[Note] This is an ideal model of sampling since the output signal is composed 

by a sequence of (non-physical) impulses (symbolized by arrows). In 

the real world there are no impulses but short duration pulses [12]. 

One can see that the sampled signal is a weighted impulse sequence (impulse 

train). The weighting factor is not more than the signal amplitude at each 

sampling time nT . Thus, the sampled signal can be written as a weighted sum 
                                                 
4 A previous study to Annex A2 is advised. 
5 An analog signal is a continuous signal both in time and amplitude. 
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of shifted in time impulses: 

*

0

( ) (0) ( ) (1) ( ) ( ) ( ) ( ) ( )
n

e t e t e t T e nT t nT e t t nT
+∞

=

= δ + δ − + + δ − + = ⋅ δ −∑  (85)

[ note ] The function ( )tδ , designated by impulse or Dirac delta represents a 

theoretical signal without physical existence. Conceptually this signal 

describes a pulse with infinitely small duration and infinitely high 

amplitude. 

0 , if 0
( )

, if 0
t

t
t
≠⎧

δ = ⎨∞ =⎩
 

              This signal also admits representation in the discrete-time domain. In 

this case the signal are physically realisable and has the following 

formulation: 

0 , if 0
[ ]

1 , if 0
n

n
n
≠⎧

δ = ⎨ =⎩
 

 

Fig 18. Relationship between the upstream and downstream signals of the ideal 
sampler. 

From the previous expression the sampling process can be viewed as the 

product of a periodic impulse sequence with period T  by the sampled signal 

( )e t . In other words we are witnessing an amplitude modulation strategy where 

the carrier is the impulse train and the modulating signal is ( )e t . This concept is 

illustrated in the following figure [12]. 

 

Let us now consider the effect of signal sampling in the frequency domain. In 

order to do this let’s apply the Fourier transform to the sampled signal *( )e t : 
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* *

0

1( ) ( ) ( ) ( ) ( ) ( )
2

F

n

e t e t t nT E j E j j
+∞

=

= ⋅ δ − → ω = ω ∗Δ ω
π∑  (86)

where ( )E jω  refers to the Fourier transform of ( )e t  and ( )jΔ ω  is the Fourier 

transform of the impulse train. 

 

Fig 19. Sampling seen as an amplitude modulation. 

[ note ] 

[ ]
1

1( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( )

F

F

r t s t p t R j S j P j

R j S j P j r t s t p t
−

= ⋅ → ω = ω ∗ ω
π

ω = ω ∗ ω → = ⋅

 

Since the impulse sequence is periodic with period T , its Fourier transform is: 

( ) 2 ( )k o
n

j C k
+∞

=−∞

Δ ω = π⋅ ⋅δ ω− ω∑  (87)

where 
/ 2

/ 2

1 1( ) o

T
jk t

k
T

C t e dt
T T

− ω

−

= δ ⋅ =∫  (88)

[ note ] Sifting property [4] 

( ) ( ) ( )o of t t t dt f t
+∞

−∞

δ − =∫  

( ) se
( ) ( )

0 remain cases

b
o o

o
a

f t a t b
f t t t dt

≤ ≤⎧
δ − = ⎨

⎩
∫  

Then, 

2( ) ( )o
k

j k
T

+∞

=−∞

π
Δ ω = δ ω− ω∑  (89)

which leads to the conclusion that, in the Fourier domain, an impulse train in the 
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time domain is also an impulse train but in the frequency domain. In the 

frequency domain the impulses appear spaced by 2o Tω = π  and weighted by a 

constant factor equal to 2 Tπ . 

As already said, the sampling signal frequency spectrum can be obtained by the 

following operation: 

* 1( ) ( ) ( )
2

E j E j jω = ω ∗Δ ω
π

 (90)

The convolution between the two spectra, ( )E jω  and ( )jΔ ω , is calculated using 

the convolution integral as follows: 

* 1( ) ( ) ( ( ))
2

E j E j j d
+∞

−∞

⎡ ⎤
ω = Ω ⋅Δ ω−Ω Ω⎢ ⎥π ⎣ ⎦

∫  (91)

Substituting ( )jΔ ω  by 2 ( )o
k

k
T

+∞

=−∞

π
δ ω− ω∑  we have: 

* 1 2( ) ( ) ( )
2 o

k

E j E j k d
T

+∞ +∞

=−∞−∞

⎡ ⎤π
ω = Ω ⋅ δ ω− ω −Ω Ω⎢ ⎥π ⎣ ⎦

∑∫  (92)

i.e., 

* 1( ) ( ) ( )o
k

E j E j k d
T

+∞ +∞

=−∞−∞

⎡ ⎤
ω = Ω ⋅ δ ω− ω −Ω Ω⎢ ⎥

⎣ ⎦
∑∫   

 

* 1( ) ( ) ( )o
k

E j E j k d
T

+∞ +∞

=−∞−∞

⎡ ⎤
ω = Ω ⋅δ ω− ω −Ω Ω⎢ ⎥

⎣ ⎦
∑∫   

Since the integral of the sum is equal to the sum of integrals one get, 

* 1( ) ( ) ( )o
k

E j E j k d
T

+∞+∞

=−∞ −∞

⎡ ⎤
ω = Ω ⋅δ ω− ω −Ω Ω⎢ ⎥

⎣ ⎦
∑ ∫   

By the sifting property, and because ( )okδ ω− ω −Ω  is only nonzero for 

0okω− ω −Ω =  or. okΩ = ω− ω , one get, 

* 1( ) ( ( ))o
k

E j E j k
T

+∞

=−∞

ω = ω− ω∑  (93)

This last expression means that the sampled signal spectrum is periodic in 

frequency with fundamental period oω . Effectively the sampled signal spectrum 

is equal to the continuous signal spectrum repeated indefinitely with a period 

that depends on T . Additionally the spectrum energy of the sampled signal is T  
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times lower than the continuous signal spectrum. 

In order to illustrate the sampling effects in the frequency domain consider an 

arbitrary signal ( )e t , band limited, whose spectrum has the following generic 

profile: 

 

Fig 20. Frequency spectrum (magnitude) of a generic signal. 

In graphical terms, the expression (92) represents the overlap of ( )E jω  

replicas shifted in frequency by okω  and amplitude scaled by 1/T. Figure 21 

show the magnitude of *( )E jω . 

 

Fig 21. Frequency spectrum after sampling the signal. 

From the previous figure, one can presume that it’s possible to reconstruct the 

continuous-time signal from its sampled version. To do this we just have to 

eliminate the sampled signal spectral components above and below n±ω . This 

operation can be performed by a low-pass filter. 

It thus appears that, theoretically, it’s possible to obtain the continuous-time 

signal from the sampled one by filtering. However, in order to be possible, two 

conditions must be fulfilled. The first refers to how the signal is filtered and the 

second to how the spectrum is distributed. Regarding the former, this will be the 

study subject in section § 2.1.4. 

Concerning the second condition, and observing figure 21, one concludes that, 

to be possible the original signal recovery, overlap of adjacent bands between 

the replicas is not allowed. Since the relative position between adjacent spectra 
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depends on the sampling frequency oω  then a necessary condition for the 

invertibility of the sampling operation that n o nω < ω −ω , or 2o nω > ω . This 

condition is known as the Nyquist theorem (sometimes Shannon's theorem). It 

establishes that the sampling rate must be greater than twice the maximum 

signal frequency component (with significant amplitude) to be sampled. 

[ note ] The frequency equal to half the sampling frequency is called the 

Nyquist frequency. This convention will be followed in the course of this 

document. 

If this condition is not fulfilled, a time phenomenon known as aliasing, occurs.. 

In this case one witness a distortion where the signal frequency components, 

greater than half the sampling frequency, are translated to the limited interval 

[ ]2, 2o o−ω ω . The effect of continuous signals under-sampling will be subject to 

further analysis in the following section. 

Just to conclude one must warn that, in the discrete domain, the signal 

spectrum is often represented using a frequency axis normalization by a factor 

equal to the sampling period. Thus the axis ω  becomes the axis dω  and the 

relationship between them can be expressed by the following equality: 

d Tω = ω  (94)

The frequency dω  is usually called the “digital frequency” and, as can be 

inferred from the above expression, this frequency does not have the explicit 

notion of time. Then it’s measured in radians per sample [12]. By using this 

frequency normalization figure 21 is replaced by the following alternative 

representation: 

 

Fig 22. Frequency spectrum as a function of digital frequency. 
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So, in the digital domain, the sampling frequency is equal to 2π . In fact, 

replacing in expression (93) ω  by 2o Tω = π  we obtain 2dω = π . Additionally, 

taking into account the previous figure, the relationship between the Fourier 

transform of continuous signal and its sampled version is: 

*( ) ( )dE j T E jω = ⋅ ω to d−π < ω < π  (95)
where π  represents half the sampling frequency (the Nyquist frequency). 

2.1.2 Sampling distortion aspects 

As mentioned earlier, a strange phenomenon can arise when a continuous 

signal is sampled in time: high frequency components of the analog signal may 

appear as low frequency components (but with unchanged amplitude) in the 

discrete-time signal. This phenomenon is called aliasing and occurs whenever 

the sampling frequency is less than twice the maximum frequency component 

of the sampled signal. 

 

In order to illustrate what was just said, consider the example of a simple 

monochrome signal, ( ) sin(4 )x t t= π , sampled at two different rates 2.5 Hz and 

10 Hz. The results can be evaluated by visual inspection to figure 23 (the 

markers represent acquired signal samples). 

 

Fig 23. Sampling frequency effect: aliasing example. 
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Note that, contrary to what may seem at first glance, only the samples are part 

of the discrete signal. However, for better visual perception of the aliasing 

phenomenon, the markers are connected by line segments. In reality what one 

are doing, when joining the dots with line segments, is a sampled signal 

reconstruction using a 1st order linear interpolation: 

[ 1] [ ]( ) [ ] ( 1)x k x kx t t x k kT t k T
T

+ −
= + ≤ ≤ +   

From the previous figure it is also clear that the discrete signal, that has been 

undersampled, seems to have a frequency lower than the frequency of the 

analog signal. Furthermore it is found that the digital signal frequency (after 

reconstruction) is equal to 0.5Hz! 

In general, the value of a given frequency component, of a undersampled 

signal, can be obtained by [1]: 

%
2 2

o o
alias o

ω ω⎛ ⎞⎛ ⎞ω = ω+ ω −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (96)

where the % operation refers to the remain after division. 

Another alternative is to recurrently subtract the sampling frequency component 

signal until the result is smaller, in magnitude, than the Nyquist frequency. At 

this point the resulting frequency is the signal apparent frequency. This 

procedure can be summarized by the following equation, 

2
2

o
alias o

o

⎢ ⎥ω+ω
ω = ω−ω ⎢ ⎥ω⎣ ⎦

 (97)

where the operator ⋅⎢ ⎥⎣ ⎦  rounds its argument toward zero. 

For example, if 2.5oω =  and 26ω=  this means that, using equation (96), 

( )27.25%2.5 1.25 2.25 1.25 1 rad/saliasω = − = − =   

On the other hand, by subsequent subtractions one gets, 

26 2.5 2.5 2.5 26 10 2.5 1 rad/saliasω = − − − − = − ⋅ =   
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[ note ] In control systems, aliasing causes another more subtle problem. In 

general, in continuous-time control system, signals contaminated with 

high-frequency noise outside the control system bandwidth, don’t 

usually affect the system response. The same cannot be said for 

sampled systems since frequencies above π  will be folded back to the 

frequency range of interest. 
 

[ note ] Besides the transformation from high to low frequencies, under-

sampling also has a reverse effect on the spectrum. For some 

frequency ranges one witnesses a decrease (increase) in frequency 

when the digital analog frequency increases (decreases). This 

phenomenon can be evidenced by observing the following figure. 

 

 For analog frequencies between 0 2kω  and 0kω , k∀ ∈ , a frequency 

increased implies a decrease in module, of the digital frequency 

(remember that the negative sign refers to phase information only). 

Apparently, the aliasing problem seems simple to fix: we sample an analog 

signal ensuring that the sampling frequency obeys the Nyquist theorem. 

However things are not so simple. This is because frequency spectrum of a real 

analog signal never ends abruptly at a given frequency. It’s not possible to 

acquire an analog physical signal which is band limited in bandwidth (like the 

one shown in Figure 20). In theory, due to random noise, the spectrum of such 

signals extends from minus infinity to plus infinity. This implies that, 

independently of the chosen sampling frequency, there will always be 

sidebands overlapping. However, almost all of the signal energy is contained in 

a narrow frequencies range. Thus the signal high frequency components, 

conveying no information, must be eliminated or severely attenuated. A low-

pass filter is usually in charge of this task. The location of this filter, within a 
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control system loop, is shown in figure 24. 

 

Fig 24. Reducing the effect of aliasing by introducing a pre-filter ( )F s  

Obviously this filter must be analog. Frequently it’s implemented using 

electronic active and passive components such as operational amplifiers, 

capacitors and resistors. 

Typically these pre-filters, inserted upstream of the sampler, are called anti-

aliasing filters. The choice often falls to filters with a first-order type transfer 

function: 

( )
1( )

2 2
o

o

F s
s

ω
= ⋅

− ω
 (98)

However it is also common to find higher order filters as the case of Butterworth 

and Bessel filters. The latter have the advantage of having an almost linear 

phase (within the frequency range of interest) which implies low distortion of the 

signal profile. 

Note that the bandwidth of the anti-aliasing filter is usually much higher than the 

bandwidth of the system. This implies that the additional dynamics introduced 

by the filter can be neglected in the design procedure. However the influence of 

the filter should be taken into account in the global simulation of the control 

system. This theme will be deeper analysed in section § 2.6.2. 

2.1.3 Quantization 

In the digital control context there are three facts usually unavoidable:  

 A digital controller is based on a digital processor (computer, μC, DSP, 

ASIC, etc.).. This component is responsible for establishing the 

relationship between the control signal and the system information. 
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 A digital processor deals with binary coded information. Due to this fact, 

the arithmetic operations performed in a digital processor, always have 

finite precision. The operation accuracy depends on the device 

wordlenght. 

 The control processes are usually "analog". Thus one needs a control 

signal decoder to translate the processor’s bit string into, for example, an 

analog voltage. 

These considerations are objectively illustrated in figures 15 or 24. Ignoring the 

digital processor type, there are two system blocks: an A/D converter and D/A 

converter. Each component performs two separate functions. The A/D converter 

is responsible for: 

 Sampling the signal (sample & hold); 

 Encode the signal. i.e. by comparing the input signal magnitude to a 

reference minimum and maximum threshold, it converts a given value to 

a n bit binary word. 

[ note ] In practice the A/D and D/A conversion are performed, on electrical 

signals, using integrated circuits. 

On the other hand, the D/A converter take a binary string and, from a pair of 

fixed limits, turn it into an analog value. Besides decoding it also performs a 

reconstruction operation that will be a study subject on the subsequent section. 

Returning to the A/D conversion, signal encoding involves the loss of 

information. This is because, viewed from another perspective, a signal with an 

infinite number of levels is transformed into a finite number of levels signal (level 

quantized). In an A/D converter the number of quantization levels depends on 

the number of resolution bits and is approximately equal to 2 1n − . In the case of 

an A/D converter, with reference imposed by [ ],MIN MAXX X , the quantization 

effect can be modelled by the following expression: 

{ }( ) ( )quantx t q round x t q= ⋅  (99)

where 

2 1
MAX MIN

n

X Xq −
=

−
  

and n  refers to the number of converter bits. Figure 25 shows the effect of an 8 
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bits quantization of a error signal injected to a controller. Note that the 

quantization performance depends on the dynamic range in which the 

conversion is done (the relationship between the signal amplitude limits and the 

A/D conversion limits). 

Additionally, due to finite precision of the digital processor, a rounding or 

truncation error resulting from arithmetic operations should also be considered. 

Although the latter problem is not easily noticeable when using floating-point 

format (for example computations using MatLab®), but is evident in fixed-point 

format. For example performing multiplication operations on a 8 bit 

microcontroller using Q7 format. 

 

Fig 25. Effect of amplitude quantization. (Dynamic range of conversion between -
10 and 10 V and 8-bit coding) 

[ note ] The quantization errors introduced by 16 or 32 bits processor are 

usually negligible in the digital control context. 

In general, in controller design procedures, the quantization effect is neglected 

and only examined, at the end, with computer simulation. 

2.1.4 Reconstruction 

This section talks about the reconstruction problem of a discrete-time signal. 

Strictly speaking, in practice, one are more interested in "construction" than 

"reconstruction." This is because the control signal is digitally and not obtained 

by time discretization. The term “rebuilding” is usually employed bearing in mind 

the recovery of a sampled signal that has been originally continuous. 
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At first the mathematical concepts, underlying the reconstruction of a sampled 

signal, are presented. Additionally we present the conditions, under which, this 

recovery can be attained. The reconstruction problem, in the context of digital 

control, is then addressed. Prosecuting this subject, the dynamic influence of 

the D / A converter in the control loop, will be analysed. 

2.1.4.1 Ideal Reconstruction 

Theoretically, if properly sampled, a continuous signal in time can be 

reconstructed using an ideal low-pass filter. For a convenient reconstruction is 

necessary that the filter has cut-off frequency 2n c oω < ω < ω  and magnitude, in 

pass-band, equal to T  as shown in the figure below. 

 

Fig 26. Reconstruction of a sampled signal (magnitude normalized) 

The reconstruction sequence of a continuous time signal, from its sampled 

version, is the product of the sequence Fourier transforms by the ideal low-pass 

filter Fourier transform. In mathematical terms one write: 
*( ) ( ) ( )E j E j H jω = ω ⋅ ω  (100)

were ( )E jω  is the Fourier transform of the reconstructed signal ( )e t . In the time 

domain the previous relation is expressed as: 
*( ) ( ) ( )e t e t h t= ∗  (101)

On the other hand, the impulse response of the ideal low-pass filter can be 

easily derived using the inverse Fourier transform definition. Thus, 

1( )
2

c

c

j th t Te d
ω

ω

−ω

= ω
π ∫   
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2.1.4.2 Real Reconstruction 

Usually, even in a digital control system, the control plant is continuous in time. 

Thus, even if a discrete signal can sometimes be used to drive system directly, 

this procedure is rarely used due to high frequency components of the signal 

injected into the actuators. Thus the decoded control signal is usually converted 

into a continuous-time signal. 

Let us now consider how this conversion can be done. In the previous section, 

the conversion procedure suggested the use of a ideal low-pass analog filter. 

Now let’s imagine the closed-loop structure illustrated by figure 27. 

 

Fig 27. Microprocessor control of an analog process 

At a given time instant kT  the microprocessor outputs a control signal *( )m kT  

using some control law. This value is applied to the process and the next control 

signal value is applied only in the next instant ( )1k T+ . 

Between discrete time instants, kT  and ( )1k T+ , which control values should 

be applied to the system? 

[ note ] In real-time control there are causality constraints. Thus it’s not 

possible to access the control signal future values. 

At the present instant, only *( )m kT  and its past values are known. For this 

reason it is necessary, only from the known data, to forecast the control signal 

values between sampling periods. It’s necessary to infer the most likely values 

between the present sample and the next one. 

[ note ] The predictive nature of the reconstruction system is closely related to 

the non-causality of the ideal analog filter introduced in section § 

2.1.4.1 

One way to accomplish this prediction is by polynomial extrapolation [13]. From 
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the present and past knowledge, and using a polynomial function, one predict 

the more likely values of the control signal between the sampling instants kT  

and ( 1)k T+ . 

Let’s see how a possible polynomial can be derived. First it’s necessary to 

expand the signal ( )m t , using a Taylor series, around the point t kT= : 

( ) ( ) ( )( ) ( ) ( )
!

p p

p
t kT t kT

dm t t kT d m tm t m kT t kT
dt p dt= =

−
= + − ⋅ + + ⋅  (103)

[ note ] Taylor series expansion of a function ( )f x  around x a= : 

0

( ) ( )( )
!

k k

k
k x a

x a d f xf x
k dx

+∞

= =

−
= ⋅∑  

The analysis of the previous expression provides some clues regarding the 

impossibility of knowing, with certainty, the control signal values between 

samples. In first place the polynomial can be infinite and, in second place, the 

coefficients calculation requires the knowledge of the signal derivative at point 

t kT= . The formal derivative definition is given by the following equality : 

0

( ) ( ) ( )lim
h

t kT t kT

dm t m t h m t
dt h→

= =

+ −
=  (104)

It’s clear that the derivative operator is not causal and requires knowledge of 

signal values for posterior moments regarding t kT= . Thus, because one has 

only knowledge of past and present values of the command signal, in the 

discrete-time domain the derivative is approximated by: 

( ) ( ) ( ) ( ) ( ) (( 1) )

t kT t kT

dm t m t m t T dm kT m kT m k T
dt T dt T= =

− − − −
≈ ≈i.e.  (105)

Because it’s impossible to compute an infinite number of derivatives, expression 

(103) must be truncated at a certain point. With this strategy higher order 

derivatives are ignored. 

Since one can select the truncation point, one alternative is to disregard all 

derivatives of order higher than zero. This strategy leads to a zero order 

polynomial extrapolator commonly referred to as zero-order (zero-order hold - 

ZOH). In this context, and since the approximation must be valid only between 
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sampling periods, the reconstructed signal is: 

( ) ( )m t m kT=  for ( 1)kT t k T≤ < +  (106)
 

With this signal model the prediction made is of naïve type: the model assumes 

that the command value does not change between samples. In the time domain 

the appearance of zero-order holder output signal is: 

 

Fig 28. A discrete-time signal reconstructed by a zero-order holder 

An alternative way to write the previous expression is: 

[ ]( ) ( ) ( ) ( ( 1) )m t m kT u t kT u t k T= ⋅ − − − +  (107)

Where ( )u t  concerns the Heaviside function (discrete-time step function). The 

zero-order hold work as one input one output system. The present sample is fed 

to the input and the ZOH deliver, at the output and during one sample period, a 

control signal prediction based on this sample. If one applies an impulse to the 

ZOH input then he reacts with his impulse response. In mathematical terms, the 

ZOH impulse response is obtained by: 

[ ]( ) ( ) ( ) ( ( 1) )zohh t kT u t kT u t k T= δ ⋅ − − − +   

where ( )tδ  refers to the impulse function. Thus, by definition, ( )kTδ  is only 

nonzero for 0k =  and then the previous expression takes the following form: 

[ ]( ) ( ) ( )zohh t u t u t T= − −  (108)

Were ( ) ( )u t u t T− −  represents the “window function” with length T. Then one 

concludes that the zero-order hold creates a pulse for each input impulse. 
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The frequency response of this device can therefore be calculated by applying 

the Fourier transform to the previous expression or, alternatively, by assessing 

its Laplace transform along the jω  axis. 

Under the latter strategy one gets, 

1 1( )
sT sTe eH s

s s s

− −−
= − =  (109)

Since ( ) ( )s jH j H s = ωω = , the previous expression becomes, 

1( )
j TeH j

j

− ω−
ω =

ω
 (110)

Or else, 

2 2
2( )

T Tj jTj e eH j e
j

ω − ω
− ω

⎧ ⎫
−⎪ ⎪ω = ⎨ ⎬ω⎪ ⎪⎩ ⎭

  

Taking into consideration the Euler identities the Fourier transform becomes, 

2
( ) 2 sin

2

Tj
e TH j
− ω

⎛ ⎞ω = ω⎜ ⎟ω ⎝ ⎠
  

in other words 

2( ) sinc
2

TjTH j T e
− ω⎛ ⎞ω = ⋅ ω ⋅⎜ ⎟

⎝ ⎠
  

and finally, if we note that 2
o T

π
ω =  

( ) sinc o
j

o

H j T e
ω

− π
ω⎛ ⎞ω

ω = ⋅ π ⋅⎜ ⎟ω⎝ ⎠
 (111)

[ note ] Euler's Identities 

cos( )
2

j je eθ − θ+
θ =  and sin( )

2

j je e
j

θ − θ−
θ =  

A draft of the zero-order holder frequency response is illustrated in figure 29. As 

one can analyze by equation (111), the amplitude frequency response is a 

damped sinusoidal and the zero-crossings occur at integer multiples of oω . The 

spectrum amplitude is sampling period dependent and the system phase 
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changes linearly with the frequency. However, as can be seen in the figure 

below, there are multiple unwanted peaks in odd multiples of the Nyquist 

frequency, i.e. ( )2 1 2op + ω , 1, 2,p = . 

 
Fig 29. Frequency response of a zero-order (magnitude normalized) 

Note also that, at the Nyquist frequency, the attenuation is approximately 4 dB 

and the gain in pass-band is not constant. Due the latter consideration, a 

spectrum distortion of the applied signal is observed. Additionally, from 

expression (111), it can be concluded that the ZOH performance as extrapolator 

strongly depends on the sampling frequency. In fact if 0ω →∞  then ( )H j Tω → . 

This means that the output signal can be made arbitrarily close to the input 

provided that the sampling period can be made arbitrarily small. 

Although other reconstruction strategies can be derived, such as first-order 

holders (see problem E21) the zero-order holder is, by far, the most used (a 

common D/A converter performs exactly this function). Therefore this subject 

will not be prosecuted. 

2.1.4.3 Effect of the ZOH dynamics 

The transfer function of a zero-order holder has the following appearance: 

1( )
sT

zoh
eG s
s

−−
=  (112)

Using this expression we draw two important conclusions. First, and given the 
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final-value theorem, we see that: 

0 0

1 0lim ( ) lim
0

sT

zohs s

eG s
s

−

→ →

− ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (113)

Using the l'Hopital rule, the limit as s  approaches zero , become 

0 0

1lim lim
1

sT sT

s s

e eT T
s

− −

→ →

−
= =  (114)

Please recall that, at the beginning of this chapter, it was seen that the sampling 

process has, as a side effect, the spectrum amplitude scaling by a factor 

inversely proportional to the sampling period, 

* 1( ) ( )E j E j
T

ω = ω
 
to 

2 2
o oω ω

− < ω <  (115)

Thus, if a zero-order is used upstream the system, then it’s not necessary to 

adjust the controller gain (this concept will be reviewed later on when talking 

about the z  transform). 

In order to detect another details about the ZOH transfer function, one begin to 

expand ( )zohG s  using a Taylor series around 0T = : 

( ) ( ) ( ) ( )2 3 4 51 1 1 11
2 6 24 120

sTe sT sT sT sT sT− = − + − + − +   

Substituting in equation (110) one gets, 

( ) ( ) ( ) ( )2 3 4 51 1 1 11 1
2 6 24 120( )zoh

sT sT sT sT sT
G s

s

⎛ ⎞− − + − + − +⎜ ⎟
⎝ ⎠=   

and after simplification: 

( ) ( ) ( ) ( )2 3 41 1 1 1( ) 1
2 6 24 120zohG s T sT sT sT sT⎛ ⎞= − + − + −⎜ ⎟

⎝ ⎠
  

On the other hand it is easy to show that: 

( ) ( ) ( )2 3 42 1 1 1 11
2 8 48 384

Ts
T e T sT sT sT sT

− ⎛ ⎞⋅ = − + − + −⎜ ⎟
⎝ ⎠

  

Now neglecting the terms of order greater than one: 

2( )
Ts

zohG s T e
−

≈ ⋅  (116)

In fact, as shown in the figure 30, the accuracy of approximation (116) 

decreases with the sampling period increase. 
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Fig 30. Relative error of approximation 2( ) sT
zohG s T e−≈ ⋅  

This approximation is very useful for controller design using frequency based 

design techniques like Bode plots. In terms of Bode diagrams, a zero-order 

holder contributes with a gain equal to 1020 log ( )T⋅  and a phase lag that 

decreases linearly with frequency with a slope equal to half the sampling period 

(pure time delay). If the sampling period is large then the phase slope in acute 

and the ZOH has a large impact on the overall system frequency response. This 

is because a delay in a control loop is always cause of instability. 

[ note ] As one will see further ahead, the zero-order contribute to system 

destabilization by reducing the system phase margin. The phase 

margin decrease is directly proportional to the sampling period. 

When the design method is based on time-domain techniques such as the root 

locus, often a pure time delay of 2T  seconds can be crudely modelled by a 

first order system with the following appearance: 

2( )
2zoh
TG s T

s T
≈

+
 (117)

An alternative way is to express the pure time delay using the Padé 

approximation [6]. This strategy finds a set of parameters in order to minimize 

the error between the exponential McLauren series expansion and an arbitrary 

order k  transfer function. The pure delay Padé approximation is obtained by 
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solving the following minimization problem subject to proper transfer functions: 

( ) ( ) 1 0

1

min min
1

dsT b s be
a s

−⎧ ⎫⎛ ⎞+⎪ ⎪ε = ϒ − ϒ⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
 (118)

In the above expression ( )ϒ ⋅  refers to the McLauren series expansion of a 

function. It should be noted that the complex exponential is analytic for any finite 

value of s  (it. has n order derivative). Thus, given that the series expansion of 

both components is the sum of an infinite number of terms, the minimization of 

(118) involves the solution of an infinite number of equations with a finite 

number of unknowns. Thus, for example, in case of first order approximation, 

the solution of the minimization problem has only three degrees of freedom thus 

the McLauren series expansion is made only up to order three. 

 
Fig 31. Response time in a zero-order and its approximate model for the analysis 

of digital control systems in the frequency domain 

For the case of the zero-order hold, the first order Padé approximation is: 

( )
( )

1 4
( )

1 4zoh

T s
G s T

T s
−

≈
+

 (119)

Any of the previous ZOH approximations can be used to estimate the negative 

impact on system stability, due to sampling. The approximation (116) is 

especially suitable for frequency-domain design techniques and equations (117) 

or (119) for time-domain techniques. Figure 31 illustrates the quality of 

approximation by equation (116). 
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corresponds to an already familiar element: the transfer function of the zero-

order holder. 

On the other hand, the factor 

0

( ) kTs

k

e kT e
+∞

−

=

⋅∑   

depends on both the sampling period and the input signal. Represents in the 

time domain, a weighted sum of pulses shifted in time, i.e. the product of the 

input signal ( )e t  by a periodic pulse train with period T . Thus, this second 

factor, represents the action of the ideal sampler and is defined, as already 

introduced in section § 2.1.1, as *( )E s . 

Due to what was above said, the output signal of an ideal sampler is defined as 

the signal whose Laplace transform is: 

*

0
( ) ( ) kTs

k
E s e kT e

+∞
−

=

= ⋅∑  (122)

The *( )E s  is usually called the starred transform of ( )E s . 

[ note ] If ( )e t  is discontinuous in t kT=  then ( )e kT  is taken into ( )e kT + . In 

other words, the value that ( )e t  takes when t  approaches kT  by right 

hand values.  

On the other hand, even without explicit intention, the stared transform was 

already defined in section § 2.1.1 on a different perspective. It was then 

demonstrated that an alternative definition for a starred transform would be: 

* 1( ) ( ( ))o
k

E j E j k
T

+∞

=−∞

ω = ω− ω∑   

which, in the Laplace domain, has the following aspect: 

* 1( ) ( )o
k

E s E s jk
T

+∞

=−∞

= − ω∑  (123)

This expression allows us to conclude one of the first starred transform 

properties: 

The starred transformed *( )E s  is periodic in s  with period ojω  where oω  refers 

to the sampling period. 
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This conclusion can be strengthened if one considers that in section § 2.2.1 it 

was shown that *( )E jω  is no more than (unless a scale factor) the signal 

spectrum ( )E jω  repeated from oω  to oω . 

Another fundamental starred transform property states: 

If ( )E s  has a pole at s a=  then his star has transformed into an infinite number 

of poles located, according to the plane s In os a jk= − ω  for any k∈ . 

Note that the same cannot be said about the zeros. Thus, even if they check the 

first property, normally the zeros are not mapped into the s  plane in the same 

way as the poles as we shall see later with an example. 

Suppose a second order system with a pair of complex conjugate poles with the 

following format: 

1( ) , ,
( )( )

E s
s j s j

+= ∀σ∈ ∀ω∈
+σ− ω +σ+ ω

  

If 2oω< ω  the poles of *( )E s  are ( )os j k= −σ± ω− ω , k∀ ∈  and the poles map 

has the aspect illustrated in figure 34. 

 [ note ] Usually the frequency range between [ ]2, 2o o−ω ω  is designated by 

primary strip and the remains by complementary strips. 

The question that now arises is: 

A different pole-zero map for *( )E s  is obtained for every different poles 

constellation of ( )E s ? 

No. If we consider, for example, 4oω = ω  then the *( )E s map of poles, 

regarding this modes, is exactly identical to the map that one would obtain if 

3 4oω = ω . In general one can say that any ( )E s  pole located in 

( )os j k= −σ± ω− ω  result in a identical map of poles for *( )E s . This statement 

can be seen, bellow, in figure 35. 
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Fig 34. Map of poles of the star transformed into a system of second order under-
damped. 

Now taking into consideration only the primary strip, and if one apply the inverse 

Laplace transform, we observe that, while the signal for the leftmost s  plane 

maintain its frequency, the rightmost one will show a lower frequency. What has 

been said lead us to the problem of frequency aliasing distortion (see § 2.1.2). 

Effectively, in the second case, the signal modes are above the sampling 

frequency. Thus, eliminating the secondary strips (by the filtering process), one 

observe the appearance of a lower frequency signal. 

2.2.1 Evaluation of E * (s) in closed form 

The starred transform format presented earlier (equations (122) and (123)) has 

an algebraic limited applicability (usually restricted only to time series). An 

alternative way to calculate a system starred transform, if the Lapace transform 

is known, results from applying the following equation [13]. 

*
( )

at the poles
   of E(λ)

1( ) Res ( )
1 T sE s E

e− −λ

⎧ ⎫= λ ⋅⎨ ⎬−⎩ ⎭
∑  

(124)

where the operator {}Res ⋅  refers to the residues of the argument expression. 

The calculation of the residues associated with each of the poles follows one of 

the two possibilities: 

 The system has a simple pole at s a= , 
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( )( ) ( )

( ) ( )Res
1 1T s T s

aa

E Ea
e e− −λ − −λ

λ=λ=

λ λ⎧ ⎫ = λ −⎨ ⎬− −⎩ ⎭
  

 The system has multiple poles at s a=  with multiplicity m , 

( ) ( )
1

( ) 1 ( )

( ) 1 ( )Res
1 1 ! 1

m
m

T s m T s
a a

E d Ea
e m d e

−

− −λ − − −λ
λ= λ=

⎛ ⎞λ λ⎧ ⎫ ⎡ ⎤= λ −⎨ ⎬ ⎜ ⎟⎢ ⎥− − λ −⎩ ⎭ ⎣ ⎦⎝ ⎠
  

 

Fig 35. Map of poles for the same continuous system sampled at different rates. 

In cases where the system transfer function includes a pure time-delay (an 

integer number of the sampling period), 

( ) '( ),kTsE s e E s k±= ⋅ ∀ ∈   
then 

( ){ }1* ( )

'( )

( ) Res '( ) 1kTs T s

nos pólos
de E

E s e E e
−± − −λ

λ

= λ ⋅ −∑  
 

A few paragraphs ago, when talk about the properties of the starred transform, 

one said that the continuous transfer function zeros were not mapped in the 

same way as the poles. This statement can be validated through the following 

minimum phase system: 

( ) s aE s
s b
+

=
+

  

By the residue theorem one obtain, 
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*
( )

1( )
1 T s

b

aE s b
b e− −λ

λ=−

λ +
= λ +

λ + −
  

which leads to: 

* ( )( )
1 Ts Tb

a bE s
e e− −

−
=

− ⋅
  

The *( )E s  pole is located at: 

1 0Ts Tb Ts Tbe e e e s b− − −− ⋅ = ⇒ = ⇒ = −   
However, the complex exponential function is periodic with period 2kπ  for all 

k∈  (just look at Euler's formula!). Thus, 
1( 2 )1 0 1 0Ts Tb T s j k T Tbe e e e

−− − − + π− ⋅ = ⇔ − ⋅ =   

Since 2o Tω = π  

( )1 0oT s jk Tbe e− + ω− ⋅ =   
which leads to os b jk= − − ω . Thus, as predicted, the poles within the primary 

strip have the same location as the ( )E s  poles. On the other hand, while ( )E s  

has a finite zero *( )E s  has no zeros! 

2.2.2 The Z transform 

As we shall see later, the starred transformed is a useful tool for discrete time 

systems analysis. However, the transfer function of a sampled system, unlike 

the continuous systems counterpart, does not appear as a ratio of polynomials 

(note the example of the complex exponential in the previous section). 

Moreover, and recalling the aspect of a sampled system poles-zeros map, we 

find that these are infinite in number which does not help when using the 

singularities location for system analysis. Thus, an alternative strategy is 

presented. 

This new strategy is nothing more than a variable swap: sTe  in *( )E s  is replaced 

by the variable z . With this procedure the sampled system transfer function can 

be written as a z  polynomial ratio. This transformation is appropriately 

designated by z  transform and, regarding the starred transform, can be 

described mathematically as: 
*( ) ( ) sTz e

E z E s
=

=  (125)
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Equations (122) and (124) can take a different form by expressing them as z  

functions: 

( ) ( ) k

k

E z e kT z
+∞

−

=−∞

= ⋅∑  (Bilateral transform) (126)

0
( ) ( ) k

k
E z e kT z

+∞
−

=

= ⋅∑  (Unilateral transform)  

 

( ){ }11

( )

( ) Res ( ) 1 T

nos pólos
de E

E z E z e
−− λ

λ

= λ ⋅ −∑  
(127)

Since the z  transformed was derived from the Laplace transform, it inherits 

many of its features. One of them is the concept of convergence region. In this 

case the convergence is assured if ( )E z < ∞ , that is. 

1( ) ( ) ( )
kk

k k

E z e kT z e kT z
∞ ∞

− −

=−∞ =−∞

= ≤ < ∞∑ ∑  (128)

The set of values for which the z  transform converges is called the 

convergence region. As we shall see, graphically the convergence region 

consists on a ring in the plane z  cantered at the origin who’s upper and lower 

limits can be a circle or extend to infinity. 

[ note ] Remember that the Laplace transform is for continuous-time the same 

way as the z transform is for discrete-time systems 

A summary of z  transform properties is presented in the following text box. This 

subject is further explored in detail in [12] and [14]. 

2.2.3 Modified Z Transform 

In section § 2.2.1 when talked about systems with pure time delays, integer 

multiples of the sampling frequency, it was said that they admit starred 

transform representation as: 

( ){ }1* ( )

'( )

( ) Res '( ) 1skT T s

nos pólos
de E

E s e E e
−± − −λ

λ

= λ ⋅ −∑  
(129)

where '( )E s  refers only to the polynomial transfer function component. 

Likewise, and taking into consideration what was said in section § 2.2.2, the 
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previous equation is replaced by the following z  shaped one: 

( ){ }11

'( )

( ) Res '( ) 1k T

nos pólos
de E

E z z E z e
−± − λ

λ

= λ ⋅ −∑  
(130)

But how to find a system z  transform if the pure time delay is not an integer 

multiple of the sampling period? For example the system 

1.2

( )
1

seE s
s

−

=
+

  

sampled at a rate 0.013T = ? 

[ properties ] 
Linearity 

{ }( ) ( ) ( ) ( ), ,a e kT b f kT a E z b F z a b⋅ + ⋅ = ⋅ + ⋅ ∀Z  

Time Shift 

{ }( ) ( ) ( )ne kT nT u kT nT z E z−− ⋅ − = ⋅Z  

Final Value Theorem 

1
lim ( ) lim( 1) ( )
k z

e kT z E z
→∞ →

= −  

In order to analyze such systems it’s necessary to have the z  transform of the 

time delay function. As we have seen earlier, the starred transform of a signal 

( )e t , is the Laplace transform of the product of this signal by a periodic 

sequence of pulses of period T , 

*

0
( ) ( ) ( )

k

E s e t t kT
+∞

=

⎛ ⎞
= ⋅ δ −⎜ ⎟

⎝ ⎠
∑L   

The signal pure time delay refers to a displacement in the growing sense of the 

time axis. Thus, shifting the signal ( )e t  of a fractional amount of the sampling 

period, say TΔ  with  

(1 )T m TΔ = −  with 0 1m≤ ≤   

the previous expression takes the following form: 

*

0
( ) ( (1 ) ) ( )

k

E s e t m T t kT
+∞

=

⎛ ⎞
= − − ⋅ δ −⎜ ⎟

⎝ ⎠
∑L  (131)
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Note that sampling is not delayed, only the signal. Now, since the function is 

dependent on an additional parameter ( m ), the previous equation is rewritten 

as: 

*

0
( , ) ( (1 ) ) ( )

k

E s m e t m T t kT
+∞

=

⎛ ⎞
= − − ⋅ δ −⎜ ⎟

⎝ ⎠
∑L   

Since the starred transform is identical to the z  transform with sTz e=  then 

*

0

( , ) ( , ) ( (1 ) ) ( )sT
sT

z e
k z e

E z m E s m e t m T t kT
+∞

=
= =

⎛ ⎞
= = − − ⋅ δ −⎜ ⎟

⎝ ⎠
∑L   

or, 

0

( , ) ( ) ( )
sTk z e

E z m e t T mT t kT
+∞

= =

⎛ ⎞
= − + ⋅ δ −⎜ ⎟

⎝ ⎠
∑L   

Pure-time delays, integer multiples of the sampling period, can be factored 

back, the previous expression is replaced by the following one, 

0

( , ) ( ) ( )
sT

sT

k z e

E z m e e t mT t kT
+∞

−

= =

⎛ ⎞
= + ⋅ δ −⎜ ⎟

⎝ ⎠
∑L   

that is, 

1

0

( , ) ( ) ( )
sTk z e

E z m z e t mT t kT
+∞

−

= =

⎛ ⎞
= + ⋅ δ −⎜ ⎟

⎝ ⎠
∑L  (132)

It is known that the Laplace transform of the product of two variables in time is 

given by the complex convolution integral. 

[ note ] 

If 
1

( ) ( )x t X s
−

L

L
 and 

1
( ) ( )y t Y s

−

L

L
 then 1( ) ( ) ( ) ( )

2

j

j

x t y t X Y s d
j

σ+ ∞

σ− ∞

⋅ → λ ⋅ −λ λ
π ∫

L

 

This integral can be solved using a theorem derived from complex analysis: the 

residual method (the same method used to derive equations (124) and (127)). 

[ note ] 

If 
1

( ) ( )x t X s
−

L

L
 and 

1
( ) ( )y t Y s

−

L

L
 then 

[ ] { }
At the poles

( )

1( ) ( ) ( ) ( ) Res ( ) ( )
2

j

j
of X

x t y t X Y s d X Y s
j

σ+ ∞

σ− ∞
λ

⋅ = λ ⋅ − λ λ = λ −λ
π ∑∫L  
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Thus, considering that ( )e t  has Laplace transform ( )E s , and the pulse 

sequence has Laplace transform equal to: 

0 0 00

( ) ( ) ( ) st skT

k k k

s t kT t kT e dt e
∞+∞ +∞ +∞

− −

= = =

⎡ ⎤
Δ = δ − = δ − ⋅ =⎢ ⎥

⎣ ⎦
∑ ∑ ∑∫L  (Unilateral) (133)

Since ( )sΔ  is a geometric series with ratio sTe−  than, 

1( )
1 sTs

e−Δ =
−

 (134)

[ note ] Summing the terms in a geometric progression: 
1

1

a bb
k

k a

r rr
r

+

=

−
=

−∑  

Thus, and given the residue theorem, expression (132) is replaced by the 

following one: 

{ }1

( )

( , ) Res ( ) ( )
sT

mT

nos pólos
de E z e

E z m z e E s− λ

λ =

⎡ ⎤
⎢ ⎥= λ ⋅Δ −λ⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (135)

Substituting ( )sΔ −λ  by expression (134), evaluated s s= −λ , the above 

equality is replaced by, 

1
( )

( )

1( , ) Res ( )
1

sT

mT
T s

nos pólos
de E z e

E z m z e E
e

− λ
− −λ

λ =

⎡ ⎤
⎧ ⎫⎢ ⎥= λ ⋅⎨ ⎬⎢ ⎥−⎩ ⎭⎢ ⎥⎣ ⎦

∑  (136)

i.e. 

1
1

( )

1( , ) Res ( )
1

mT
T

nos pólos
de E

E z m z e E
z e

− λ
− λ

λ

⎡ ⎤
⎧ ⎫⎢ ⎥= λ ⋅⎨ ⎬⎢ ⎥−⎩ ⎭⎢ ⎥⎣ ⎦

∑  (137)

Which is the more effective form to compute the modified transformed z  from 

the Laplace transform of a signal or system. 

An alternative way of establishing the modified z  transform is verifying, from 

expression (130), that 
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*

0 0
( , ) ( (1 ) ) ( ) ( (1 ) ) ( )

k k

E s m e t m T t kT e t m T t kT
+∞ +∞

= =

⎛ ⎞ ⎛ ⎞
= − − ⋅ δ − = − − ⋅δ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑L L   

Given the definition of discrete-time impulse, the previous equation takes the 

following form: 

*

0 0
( , ) ( (1 ) ) ( ) ( (1 ) ) kTs

k k

E s m e kT m T t kT e kT m T e
+∞ +∞

−

= =

⎛ ⎞
= − − ⋅δ − = − − ⋅⎜ ⎟

⎝ ⎠
∑ ∑L   

For 0k =  then ( ){ }*( , ) (1 ) ( )E s m e m T t= − − δL . As (1 )m T−  is always positive 

[ ]0,1m∀ ∈  then (1 )m T− −  concerns a negative value. Additionally, since ( ) 0e t =  

for 0t <  the previous relationship is replaced by the following one, 

*

1
( , ) ( (1 ) ) kTs

k
E s m e kT m T e

+∞
−

=

= − − ⋅∑   

which leads to the alternative modified z  transform formulation: 

1

( , ) ( (1 ) ) k

k

E z m e kT m T z
+∞

−

=

= − − ⋅∑  (138)

This parameterization provides an alternative to expression (136) and may be 

useful in cases where the signal comes in time-series format. 

Finally, in order to illustrate the modified z transform conversion, consider the 

following example where you one want to obtain the modified z  transform for 

the following system, 

1.2

( )
1

seE s
s

−

=
+

  

sampled at a rate 0.013T = . This system can be rewritten as 

[ ]
( ) ( 1 )

( ) , 0,1
1 1

T k s T k m se eE s k m
s s

− +Δ − + −
+= = ∀ ∈ ∀ ∈

+ +
  

Due to this fact we obtain that 

1.2 92k
T

⎢ ⎥= =⎢ ⎥⎣ ⎦
  

Note, once again, that ⋅⎢ ⎥⎣ ⎦  refers to the floor rounding operator. Using the 

computed k  one find the value of Δ  as follows: 
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1.2 0.308kT
T
−

Δ = ≈   

which leads to that 

1 0.692m = −Δ ≈   
Then, the ( )E s  modified z  transform is: 

( 1)
1 94 93

1
1

1 0.991( , ) Res
1 1 1 0.987

k Ts mTs mT

m T

e e eE z m z z z
s z e z

− + λ
− − −

− λ
λ=−

⎡ ⎤ ⎧ ⎫⋅
= = ⋅ ≈⎨ ⎬⎢ ⎥+ λ + − −⎣ ⎦ ⎩ ⎭

Z  

[ suggestion ] Perform the same procedure, but this time with 0.2T =  

Comparing the expressions (127) and (137), one can say that, for the case of 

systems with pure delays integer multiples of the sampling period, both 

transforms are related by the following equality: 

0
( ) lim ( , )

m
E z zE z m

→
=  (139)

Additionally, and just like in the ordinary z transform, pure time-delays integer 

multiples of the sampling period can be factored, 

( ) ( )( ) ( )skT k
m me E s z E s± ±=Z Z  (140)

Please note that the z  transform tables cannot be applied directly to his 

modified version. Therefore new tables must be derived (usually by the 

expression (137)). Annex A4 gives some transform pairs for the most common 

signals or systems. 

2.2.4 Inverse Z transform and difference equations 

Typically, a digital controller is conceptually, a set of equations that operate in a 

time-domain sampled signal (usually the error). In this curricular unit, one must 

think that those equations are implemented and solved by digital 

microprocessors.  

Just like some analog controller design techniques, the design of digital 

controllers is made using the frequency domain representation of the open-loop 

system. One start from the system Laplace transform and try to obtain the 

controller transfer function (in the z  domain) in order the closed-loop system to 

cope with the defined performance criteria. 
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As already mentioned, typically the implementation of the controller is in the 

time domain then, in order to physically implement the control law in the 

microprocessor based system, there’s a need to convert the frequency domain 

controller transfer function to the digital time domain. This procedure is 

performed through the inverse z  transform operation. 

Formally, the inverse z  transform is described mathematically by: 

11[ ] ( )
2

k

c
e k E z z dz

j
−=

π ∫  (141)

where the contour integral is taken counter-clockwise in the convergence region 

containing the origin of ( )E z . 

There are several techniques for obtaining the inverse z  transform from a 

discrete-time transfer function. Most of them bypasses the computation of the 

contour integral solution by using tables and, if necessary, a pre-arrangement of 

the original function by splitting up or taking rational expansions [10] [13]. An 

alternative strategy is based on the evaluation of the contour integral using the 

Cauchy residue theorem. Thus, the inverse transform of ( )E z  can be obtained 

given the following relation [13]: 

{ }
1

1

at poles of
( )

[ ] Res ( )
k

k

E z z

e k E z z
−

−= ⋅∑  
(142)

Note that, unlike the equation {126}, residues are taken to the poles of 1( ) kE z z − . 

Thus, if 0k <  it’s necessary to evaluate, besides the poles of ( )E z , the residues 

of 1k +  poles at the origin. However, since this course interest lies only in 

causal systems, the equation (142) is evaluated only for 0k ≥ . Note that for 

0k =  it is necessary to calculate the residue at 0z = . 

Just like in the starred transform, the residue assessment depends on the poles 

multiplicity. 

 If the system has a simple pole at z a= , 

{ }1 1Res ( ) ( ) ( )k k

z az a
E z z z a E z z− −

==
= −   

 If the system has a multiple pole at z a=  multiplicity m , 

{ }
1

1 1
1

1Res ( ) ( ) ( )
( 1)!

m
k m k

mz a
z a

dE z z z a E z z
m dz

−
− −

−=
=

⎛ ⎞
⎡ ⎤= −⎜ ⎟⎣ ⎦− ⎝ ⎠
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In the normal context of control engineering, the discrete transfer function is 

usually a ratio of polynomials in z  with the generic form: 
1

1 0
1

1 0

( )( )
( )

m m
m m

n n
n

b z b z bY zG z
U z z a z a

−
−

−
−

+ + +
= =

+ + +
 (143)

As seen above, to ensure causality it is necessary that the denominator 

polynomial degree is equal or greater than the numerator polynomial degree. 

Re-arranging the above expression one obtain: 

( ) ( )1 1
1 0 1 01 ( ) ( )n m n m n n

n m ma z a z Y z b z b z b z U z− − − − − −
− −+ + + = + + +  (144)

Applying the inverse transform (see [properties] pg. 88) we may write: 

1 0

1 0

[ ] [ 1] [ ]
[ ] [ 1] [ ]

n

m m

y k a y k a y k n
b u k m n b u k m n b u k n

−

−

+ − + + − =
− + + − + + + + −

 (145)

Such equation types are called difference equations and they are what actually 

define the control rules implemented in digital microprocessors. 

[ note ] In the difference equation [ ]y k  refers, in fact, to ( )y kT . The notation 

presented is based on the precedent introduced by Oppenheim and 

Schaffer (1998) and aims to be a more compact, and less ambiguous, 

way to represent discrete sequences. So one can say that: 

[ ] ( ) ( )
t kT

y k y kT y t
=

= =  

 

[ note ]  

In many control systems publications it’s possible to detect an alternative 

difference equations presentation. This alternative is based on the definition of a 

time shift operator. This shift may be in order to advance time (forward shift 

operator) or to time delay (backward shift operator). The shift operator is 

denoted by the letter q  and, when applied to a function in time, performs the 

following operation: 

- ( ) ( ) [ 1]q e kT e kT T e k⋅ = + = +  (time advance) 

- 1 ( ) ( ) [ 1]q e kT e kT T e k− ⋅ = − = −  (time delay) 

In a general way, 

- ( ) ( ) [ ],pq e kT e kT pT e k p p⋅ = + = + ∀ ∈  
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For example, consider the following transfer function: 
1

1 0
1

1 0

( ) ( ) , , ,
( ) ( )

m m
m m

n n
n

b z b z bY z B z n m n m
U z z a z a A z

−
−

−
−

+ + +
= = ∀ ∈ ≥

+ + +
, 

Dividing both terms by nz  and considering that the excess of poles over zeros is 

d n m= −  one gets: 
1 1 *

1 0 1 0
1 1 *

1 0 1 0

( ) ( )
( ) 1 1 ( )

m n m n n d d d m
m m

n n
n n

z b z b z z b z b zY z B z
U z a z a z a z a z A z

− − − − − − − − −
− −

− − − −
− −

+ + + + + +
= = =

+ + + + + +
 

where *( )A z  and *( )B z  refer to the reciprocal polynomials. Factoring dz− , and 

taking the inverse z transform,  the differences equation can be written as: 
* 1 * 1( ) ( ) ( ) ( )A q y kT B q u kT dT− −= −  

Note that z q≠  since the former is a complex variable and the second is an 

operator. However, to some extent, one can say that 

( )
1

1( ) ( ) if ( ) ( )
z

p p

z
q e kT z E z e kT E z

−

−⋅ = Z  

2.3 Mapping the s into the z plane 

As we have just seen, there is a close relation between the complex variable z  

and the complex variable s . The link between both variables was defined in 

section §2.2.2 as: 
sTz e=  (146)

In a conventional linear and time invariant analog system, the transfer function 

becomes a ratio of polynomials in s . The location, in the s  plane, of the poles 

and zeros defines the system dynamic behaviour. In the same fashion, discrete-

time systems can also be described by a ratio of polynomials in z . Also the 

values of z  that make the function equal to zero are called the transfer function 

zeros. In the same way, the values of z  that make the transmission infinite are 

called the transfer function poles. Like its continuous-time counterpart, the 

dynamic behaviour of a discrete system is also closely linked to the poles and 

zeros location on a map called the z  plane. 

Being z  a complex variable makes sense that the z  plane, like the s  plane, is 

the Argand plane for complex numbers. Moreover, given the existence of a 

relationship between the complex variables s  and z  seems obvious that there 
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also a relationship between both plans. Indeed it is. During this section will 

observe how the plane s  is transformed into the plane z  from the relationship 

(146). 

As already said, the variable s  being complex, has both real and imaginary 

parts described generically by: 
s j= σ+ ω (147)

Given the equation (146) it’s possible to state that 
( )j T T j Tz e e eσ+ ω σ ω= = ⋅  (148)

The z  module and phase are Teσ  and j Te ω  respectively. Additionally, since the 

complex exponential is a periodic function with period 2kπ , k∀ ∈ , the following 

relationship holds true, 

( ) ( )
2

2 ,o
jT kj T k jT kT T TTz e e e e e e k

π⎛ ⎞ω+⎜ ⎟ω + π ω+ωσ σ σ⎝ ⎠= ⋅ = ⋅ = ⋅ ∀ ∈  (149)

From this expression one concludes that the s  plane singularities, for 

frequencies integer multiples of the sampling frequency oω , are mapped to the 

same location in the z  plane. 

Now let’s analyse what happens, in the z  domain, for different values of s . If 

0s =  then, 
0 1Tz e= =   

We conclude that, in the discrete plane, a singularity at 0s =  is translated to 

1z = . In general, taking into consideration expression (147), any singularity 

located at: 

20 0 ,o
ks j jk k
T
π

= + = + ω ∀ ∈   

will have its position exactly at 1z = . 

Now we relax the s  complex variable imaginary value and force the real part to 

be zero. This situation is equivalent to evaluate the s  map along the jω  axis. In 

this case, equation (148) is reduced to, 
j Tz e ω=  (150)

By varying the analog frequency ω  from 2o−ω  to 2oω  one observe that z  

describes, in the Argand plane, a circumference with unity radius. This result 
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allows us to conclude that the Laplace’s jω  axis is mapped, on the z  plane, 

into a unit radius circle. 

[ suggestion ] Run the following code in MATLAB® and try to see what is 

going on for alpha values outside the specified range. (Note 

that if 2oω = αω  with [ ]1,1α∈ −  then jz e απ= ) 

»alpha =- 1:0.01:1; 
»Z = exp (j * pi * alpha); 
»plot (real (z), imag (z)) 
»axis square 

Now one assume the real part of the variable s  is positive. That is { }Re 0s > . 

This constraint defines, for the s  plane, only the right hand half-plane limited, at 

left, by the jω  axis. This situation leads to 1z >  and hence j Tz z e ω= ⋅  regards 

all the space outwards the unity radius circle. Thus, poles or zeros located in 

the right hand half-plane on the s  plane are mapped, in the z plane, into the 

space region outside the unity circle. 

The last situation concerns the location of continuous-time singularities located 

at the left-hand half-plane. All s  points, forced to obey at { }Re 0s < , are 

mapped, in the z  domain, into the unity circle interior region. For this reason, to 

be stable, all the causal discrete-time system poles must lye inside the unity 

circle. The following figure illustrates graphically all the cases considered in the 

previous paragraphs. 

 

Fig 36. Mapping the s into the z plane: (a) the imaginary axis is transformed into a 
unit radius circle (b) the left half-plane is converted inside the unit circle (c) 
the right half-plane becomes the plane bounded below by the circle (d) 
singularities at the origin are now at the point z = 1. 
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A final remark concerns the fact that, in sampled system, the Laplace transform 

lead to an infinite number of poles. This would not be representable in the plane 

s  however, in the plane z , all the secondary stripes are mapped into the same 

spatial location as the primary stripe. For this reason only a finite number of 

poles are represented in z . 

2.3.1 Discrete-time system frequency response 

The frequency response, in an analog system, is obtained through the system 

behaviour to pure frequency excitation signals within a given frequency range. If 

a mathematical model of the system is available, this evaluation can be made 

from the Laplace transform evaluated at s j= ω . 

The same concept can be extrapolated to systems expressed in z . Indeed, 

since, 
sTz e=   

evaluating the frequency response for a discrete system is equivalent to 

evaluate the complex variable z  for the cases in which s j= ω ,∀ω . That is, 
j Tz e ω=   

Thus, a discrete-time system with transfer function ( )G z  has frequency 

response ( )j TG e ω . 

As mentioned in section § 2.1.1, and can also be observed by equation (93), the 

product of frequency ω  by the sampling period T  result in a quantity 

designated by digital frequency dω . Thus, the frequency response is, 

( ) ( )
1 and 

d

d

j
z T

G e G zω

= ω =ω
=   

for a frequency range within the interval [ ]0,π . Additionally, since for sigma 

equal to zero the module of z  is equal to unity, the evaluation of frequency 

response is made over the unit radius circumference. 

[ note ] In the case discrete system has Fourier transform, then the z  

transform is equivalent to the Fourier transform when 1z = ,. That is 

when djz e ω=  if 1z = . 
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[ note ]  For a system, or discrete sequence, to admit Fourier transform it is 

necessary that the z  transform convergence region includes the unit 

circle. The convergence region is the set of all z  values that makes the 

transform convergent. The convergence region describes regions 

bounded by origin concentric circles. For cases where the systems is 

expressed by ratio of polynomials in z , the convergence region never 

includes the poles. Additionally, for causal systems, the convergence 

region is always bounded below by a circle. 

2.3.1.1 Frequency response geometric evaluation 

Consider the figure 37 where, in the z  plane, a generic point ajz e ω=  is 

represented. Graphically one observes that, at frequency 0aω = , z  refers to the 

point ( )1, 0j . Increasing the frequency the point moves counterclockwise around 

the unit circle. At the frequency aω = π  (i.e. for ω  equal to half the sampling 

frequency) z  refers to the point ( )1, 0j− . Now for 2aω = π  the point z  located 

again at ( )1, 0j . This situation is repeated at integer multiples of 2π . This 

phenomenon is, of course, a sampling consequence. 

 

Fig 37. Evaluation of the geometric location of a point djz e ω=  according to the 
digital frequency. 

Due to the relationship between both the z  and Fourier transforms, from the 

pole-zero map is possible to evaluate the magnitude and phase of the Fourier 

transform. So, consider a linear, time-invariant discrete-time system 

represented by a transfer function parameterized as follows, 
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1

1

( )
( ) , , e

( )

m

i
i
n

i
i

z w
G z n m n m

z p

=

=

−
= ∀ ∈ >

−

∏

∏
  

Since ( )iz p−  and ( )iz w−  are vectors in the z  plane, the Fourier transform can 

be evaluated as follows: 

 The magnitude of the Fourier transform is equal to the product of the 

magnitude of all the zero vectors divided by the product of the magnitude 

of all pole vectors: 

1

1

( )

d

d

d

m
j

i
j i

n
j

i
i

e w
G e

e p

ω

ω =

ω

=

−
=

−

∏

∏
  

 The phase is equal to the sum of the phases of all zero vectors minus the 

sum of the phases of all pole vectors pole (note: the angles are taken in 

reference to the positive real axis). 

( ) ( )
1 1

( )d d d

m n
j j j

i i
i i

G e e w e pω ω ω

= =

= − − −∑ ∑   

 

Fig 38. Vectors pole and zero for a generic frequency aω  

Consider, as an example, the following causal system defined in z  by; 

0.5( )
0.5

zG z
z
−

=
+

  

This transfer function has a zero at 0.5z =  and a pole at 0.5z = − . For a general 

frequency aω  we can plot the pole and zero vectors illustrated in Figure 38: 
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For concrete values of dω  (measured in rad / sample) one have obtained the 

results presented in table 4: 

dω  p  w  p  w  ( )djG e ω  ( )djG e ω  
0 1.5 0.5 0 0 1 / 3 0 
2π  5 2  5 2  1.1071 2.0345 1 0.9274 
π  0.5 1.5 π π 3 0 

Tabela 4. Evaluation of the system response G (z) for some frequency values  

Assessing for a wider set of values, one obtains the Fourier transform module 

and phase profile illustrated in figure 39. 

Before to end this subject the following considerations are presented: 

 The poles, when placed near the unit circle, produce well-defined peaks 

in the response at the corresponding angular frequency. 

 Zeros on the unit circle have the effect of producing a null response for 

the corresponding angular frequency. 

 

Fig 39. Frequency response for the system G (z). 

2.3.1.2 Discrete-time system stability 

In the first chapter it was seen that for a linear, time invariant and causal system 

to be stable it was necessary that the all poles possess negative real part. In the 

case of discrete systems is easy to see that the stability condition requires all 
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the poles to be inside the unit circle. 

This can be illustrated by considering the following example: Consider two 

causal first-order discrete-time systems with poles at 0.9z =  and 1.02z = : 

1
1( )
0.9

G z
z

=
−  

2
1( )
1.02

G z
z

=
−

 
 

It is easy to see that, geometrically, the first pole is inside the unit circle and the 

second is outside. Applying the inverse z  transform one obtains the following 

impulse responses: 

( )1[ ] 0.9 [ ]kh k u k=  

2[ ] (1.02) [ ]kh k u k=  
 

Figure 40 presents the graphical aspect, of both expressions, for the first thirty 

samples. 

 

Fig 40. Impulse response system 1( )G z  and 1( )G z  

As one might suspect, the impulse response 2[ ]h k  is not absolutely summable. 

The n terms sum of 2[ ]h k  lead to a geometric series with ratio greater than one 

and then divergent. Thus, poles whose magnitude is less than one, contribute to 

the transient response with terms that decay to zero over time. In other way, 
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poles with higher than unity modules, lead to transient terms that exponentially 

increase in time. 

What if, in the above problem, the poles had negative values? In stability terms 

nothing changes. Just the time response shape is changed. So consider the 

impulse response of the two previous systems but now with poles at 0.9z = −  

and 1.02z = − : 

( )1[ ] 0.9 [ ]kh k u k= −  

2[ ] ( 1.02) [ ]kh k u k= −  
 

The impulse response behaviour, for the first thirty samples, concerning both 

systems is illustrated at figure 41. 

Comparing the previous with figure 40 one concludes that both systems tend to 

the same values. However, the way they do it is different. In this second case 

the system appears to show oscillation like an under-damped system. In fact, 

this phenomenon could be anticipated since the impulse responses of both 

systems have a term of type ( 1)k−  which is alternately positive or negative 

depending on the exponent parity. So, unlike analog systems, discrete systems 

with only one pole can oscillate. Due to this fact, poles with negative real part 

are given the name "ringing poles". 

 

Fig 41. Impulse response for discrete-time systems with negative poles. 
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2.3.2 Continuous Transfer Functions Discretization 

The whole theory derived so far, to discrete-time signals, was based on the 

concept shown in Figure 17. That is, a discrete-time signal is a sequence of 

amplitude values of a continuous-time signal taken regularly at specified time 

intervals. Thus, the discrete sequence can be viewed as a weighted sum of 

discrete impulses displaced in time. The Laplace transform of this sequence, 

and subsequent change of variable, led to the concept of the z  transform: 

( ) ( )*

0
( ) ( ) ( ) ( ) ( )sT

k
z e

k
e kT E s E z e kT z E s

+∞
−

=
=

= = = ⋅ =∑L Z  (151)

What would happen if the sequence e(kT) was obtained, by sampling 

the response of an analog system, to a given excitation signal? What 

is the relationship between the analog system transfer function and 

the sequence’s z  transform? 

To answer these questions consider the following figure: 

 

Fig 42. Transfer function of a system with sampler 

The physical system transfer function that originates from a given excitation 

signal ( )u t , the signal ( )e t  is: 

( ) ( ) ( ) ( ) ( )
( )

E s G s E s G s U s
U s

= ⇒ = ⋅   

On the other hand, the output signal starred transform is 

[ ] [ ]* **( ) ( ) ( ) ( )E s E s G s U s= = ⋅   

and for sTz e= , 

[ ] [ ]( ) ( ) ( ) ( )E z E s G s U s= = ⋅Z Z  (152)

However, the transfer function ( )G z  is defined as, 

( )( )
( )

E zG z
U z

=  (153)

where 
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[ ]( ) ( )U z U s=Z   

Replacing (152) and (153) one obtains the relationship between the z  

transform and its Laplace transform: 

[ ]( ) ( )
( )

( )
G s U s

G z
U z

⋅
=
Z

 (154)

Thus, contrary to what might be assumed, [ ]( ) ( )G z G s≠ Z . In fact, what the 

previous expression tells us is that the analog system z  transform depends on 

the excitation signal. However the transfer function should be independent of 

the input signal profile. Indeed it is so, but with this strategy what one is trying to 

map into z  is not the system dynamics but its time response. It’s intended to 

find a z  function for the system from the input/output continuous signals 

observations in discrete instants (similar to system identification procedures). 

The ( )G z  transfer function serves the specific objective to preserve the 

input/output relationship of the analog system (at least in the sampling instants). 

[ note ] 

Note that [ ]( ) ( )G s U s⋅Z  is, in general, different from ( ) ( )G z U z⋅ . In fact, 

considering, for example, 

1( ) ( )G s U s
s

= =  we obtain 

( ) ( )
1

zG z U z
z

= =
−

 then, 

2

2( ) ( )
2 1
zG z U z

z z
⋅ =

− +
 

However, 

[ ] 2 2

1( ) ( )
2 1
zG s U s T

s z z
⎡ ⎤⋅ = =⎢ ⎥ − +⎣ ⎦

Z Z  

Thus, for this particular example, the z  transform of the product is only equal to 

the product of the z  transform if the sampling period is unity. 

For example, for the particular case of an impulse input, the equation (154) 

takes the following form: 
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[ ]( ) ( )G z G s=Z  (155)

This mean that the z  transform of the Laplace transform of an analog system 

only preserves the impulse response. In fact observe figure 43 which shows the 

response of, 

1( )
1

G s
s

=
+

 and ( ) , 0.2T

zG z T
z e−= =
−

 (156)

to two separate signals: an impulse and a unit step. 

If the objective was to ensure accuracy of the step response samples the z  

transform should be: 
1

1 1
1

( ) 1( ) (1 ) ( )
T

T

G s s eG z z G s s
z es

− −
− −

−−

⎡ ⎤⋅ −⎣ ⎦ ⎡ ⎤= = − ⋅ =⎣ ⎦ −⎡ ⎤⎣ ⎦

Z
Z

Z
 (157)

The result is further illustrated in figure 44. 

Looking closely at the equation (157) one observes that the z  transform of the 

system ( )G s  is taken as if the system was cascaded to a zero-order hold. 

 

Fig 43. Impulse response and step response of an analog system and its z  model 
taken from [ ]( )G sZ . Note the impulse response samples adjustment accuracy 
at the sampling instants. Compare now with the step response (figure below). 

The effect of continuous-time transfer function discretization can also be seen in 

the frequency domain. Thus consider the Bode plot illustrated in figure 45. 

As you would suspect, the discrete-time system frequency response (measured 
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to the Nyquist frequency) does not exactly match with the continuous-time 

system frequency. Depending on the excitation signal to preserve, one obtains 

different transfer functions and then, several frequency response profiles. 

 

Fig 44. Step response of the system of equation {157} 

 

Fig 45. Frequency response for three different cases: the analog system, 
transformed into their discrete system z obtained from the z transformed into 
the cascade system and zero-order. 

An alternative way to discretize the continuous-time transfer function, besides 

the one from the input/output signals observation, result from a direct 
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transformation using some s z→  mapping law. Please note that the 

relationship between the two variables has been already established as: 
sTz e=  (158)

that is. 

( )1 lns z
T

=  (159)

However this transformation law is not desirable since it converts a ratio of 

polynomials in s  into a sum ratio of nonlinear functions in z . Thus, several 

methods have been proposed in order to circumvent this problem [7]. 

The diversity of existing methods is an indicator of the ineptitude of one of them 

meets all the requirements for a mapping strategy. As we will see, each method 

has advantages and disadvantages that should be considered for the controller 

discretization. 

2.3.2.1 Euler forward and backward 

As already noted, the direct application of the transformation (159) is not 

feasible as it transforms a linear rational fraction s  in a fraction of non-linear in 

z . In order to avoid this problem, one option is to approximate (159) into a 

polynomial in z . The simplest method of doing this is to expand it in Taylor 

series around 1z =  (because we want a good match of both functions at low 

frequencies). In this context, the expression (159) is replaced by the following 

equality, 

( )
2

2
1 1 1

1 1 1 ( 1)ln ( 1)
2z z z

zs z z
T Tz Tz= = =

−
= + − − +  (160)

The logarithmic function admits an infinite number of derivatives, so the 

previous expression should be truncated at some point. One strategy is to 

neglect all terms of order greater than one. Therefore, the above expression is 

reduced to, 

( )
1 1

1 1ln ( 1)
z z

s z z
T Tz= =

= + −  (161)

which leads to the following relationship between s  and z , 

1zs
T
−

=  (162)



DIGITAL CONTROL 

www.ipb.pt/~jpcoelho/download.htm 109

What this approach means in reality and how far it is valid? 

To answer the first part of the question considers a continuous-time system 

governed by the following differential equation: 

( ) ( )dx x y t
dt

=  (163)

with zero initial conditions. Applying the Laplace transform one obtains: 

( ) ( )sX s Y s=  (164)

where { }( ) ( )X s x t=L  and { }( ) ( )Y s y t=L . Discretizing the system using the 

relationship (162) one gets, 

( )1
( ) ( )

z
X z Y z

T
−

=  (165)

Now, applying the inverse transform yields the following difference equation, 

[ 1] [ ] [ ]x k x k y k
T

+ −
=  (166)

Comparing the expression {163} with the last one, we conclude that the 

approximation {162} t in the frequency domain is equivalent to approximate the 

first derivative to a first difference. In other words, the derivative is taken as the 

difference between the signal samples of ( )x t  at ( )1t k T= +  and t kT=  divided 

by the sampling period (note the non-causal expression of (166)). Because the 

calculation of this derivative approach requires a signal sample value ahead of 

the present moment this method is often called "Euler Forward". 

The second part of the previously raised question concerns the approximation 

quality of (162). Remember that this mapping strategy was obtained by 

polynomial expansion around the lower frequencies.  

Let us first examine how, using the Euler forward discretization technique, the s

plane is mapped into the z  plane. Thus, solving the expression (162) in order to 

z  we obtain 

1z sT= +  (167)

Since s j= σ+ ω one gets, 

( )1z T j T= σ + + ω  (168)
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For 0σ =  the pure imaginary axis is mapped, at z  domain, into a vertical line 

passing through point 1z = . On the other hand, the Laplace left hand half-plane, 

is transformed into a half-plane to the left of 1z = . For analog poles located on 

the right half-plane one found that, in the digital domain, these poles are 

transformed into poles at the right hand of the vertical line that passes through 

the point 1z = . The figure 46 seeks to illustrate these considerations. 

 

We then concludes that: 

 The left half-plane in s  is not mapped within a circle of unit radius in the 

plane z (although this includes it); 

 Stable analog systems can provide unstable digital ones. In fact, 

depending on the sampling period, poles in the left half-plane in s can be 

transformed in poles outside the unit circle in z . 

 The frequency outline of the z  plane does not follow the circumference 

of unit radius. Instead follow a vertical line that passes the point 1z =  

(Note, however, that around this point, the frequency response is very 

close as forced by the performed Taylor expansion). 

 

Fig 46. Planar mapping s  to plane z  transformation using the "Forward Euler". 

Resulting from these conclusions we can say that, unless high sampling 

frequencies are used, this mapping is undesirable. An alternative has to do with 

how the derivative is calculated numerically. Instead of using the present and 

next sample value one can use the present and the previous sample. The 

following relation reflects this strategy: 
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[ ] [ 1] [ ]x k x k y k
T
− −

=  (169)

This derivative numerical method approximation is designated by "Euler 

Backward."  

The mapping carried out by this technique follows the law: 
11 1z zs

T zT

−− −
= =  (Note the pole at the origin to delay the signal) (170)

To analyze how the s  plane is mapped into the z  plane the above expression 

is solved in order to z  resulting in, 

1
1

z
sT

=
−

 (171)

Since s j= σ+ ω one get, 

( )
1

1
z

T j T
=

−σ − ω
 (172)

For 0σ = , 

( ) ( )1 11 1 1 1 1 11
1 2 1 2 1 2 2

jj T j T j Tz e
j T j T j T

ϕ− ω + + ω ⎛ ⎞+ ω
= = = + = +⎜ ⎟− ω − ω − ω⎝ ⎠

 (173)

where 

( ) ( ) ( )1 1 1tan tan 2 tanT T T− − −ϕ = ω + ω = ⋅ ω  (174)

In expression (173), the complex exponential impress, in the z  plane, a circle of 

radius 1 2  and the "offset" shifts the circle centre, along the positive real axis, 

by an amount equal to 1 2 . It is easy to verify that the stability region of the 

Laplace plane is transformed within this circle, and therefore, the right half-

plane of the s  map becomes the entire plane outside the same circle. 

As done previously for the "Euler Forward" method, figure 47 presents a picture 

that geometrically illustrates the relationship between plans s  and z  for the 

"Euler Backward" method. By observation of the this figure one concludes that: 

 As in the previous case, the left half-plane in s  is not mapped exactly 

inside a unit radius circle in the z  plane; 

 It is possible to stabilize unstable analog systems after the discretization 

process. 
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 The frequency outline of the z  plane also does not follow the unit radius 

circumference. Moreover, there is a degradation of the sampling 

frequency for points away from 1z = . 

 

Fig 47. Mapping s  plane to z  plane using the " Euler Backward." 

To conclude, let the say that often one want, after the analog transfer function 

discretization process, to maintain the original frequency response. Thus, 

although the two techniques presented are easily applied, they do not preserve 

the impulse response and severely distort the frequency response (at least for 

relatively low sampling frequencies or digital frequencies away from 0dω = ). 

Thus, in the following section, an alternative technique is presented. This new 

mapping strategy is also derived from a polynomial approximation of expression 

(162). But now with the advantage of mapping, the s  plane jω  axis, into the 

unit radius circle interior at the z  plane. 

2.3.2.2 Bilinear or "Tustin" transformation. 

The most common form of analog transfer functions discretization is by direct 

replacement of complex variable s  by a first order Padé approximation, around 

1z = , of expression (162). This technique is called bilinear or Tustin 

transformation. 

With the results obtained in section § 2.1.4.3 (equation (119)) it is possible to 

extrapolate to the case in which one intends to approximate the equation (162) 

by a ratio of two polynomials. Therefore, solving in order to s , it’s easy to verify 

that the relationship between the complex variables s  and z  is; 
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2 1
1

zs
T z

−
=

+
 (175)

[ note ] The above expression could also be obtained by applying the 

trapezoidal approximation’s numerical integration method [4] [13]. 

Or, 

2
2

sTz
sT

+
=

−
 (176)

 

given that s j= σ+ ω, 

( )
( )
2
2

T j T
z

T j T
+ σ + ω

=
−σ − ω

 (177)

Evaluating the previous expression along the jω  axis, 

2
2

j Tz
j T

+ ω
=

− ω
 (178)

That, in polar form, has the following aspect: 

djz e ω=  where 12 tan
2d
T− ω⎛ ⎞ω = ⋅ ⎜ ⎟

⎝ ⎠
 (179)

Graphically the previous equation represents in the complex plane, a circle with 

unity radius. Moreover, if 0σ < , is easy to see that the numerator modulus of 

expression (177) is lower than the denominator modulus which leads to an 

approximation modulus less than one. Thus, the entire left half-plane of the 

Laplace domain is transformed into the interior of the unit radius circle. 

Similarly, for 0σ > , this mapping strategy results in the conversion of the right 

half-plane into the outer circumference of unity radius. Thus a stable analog 

system has, as its discrete equivalent, a stable filter. However this 

transformation leads to a problem of frequency slide, i.e. the relationship 

between analog frequency and digital frequency is not linear. More specifically 

the relationship is, 

2 tan
2

d

T
ω⎛ ⎞ω = ⎜ ⎟

⎝ ⎠
 (180)

This last expression establishes the association between the s  plane frequency 

and the z  plane digital frequency. 
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[ proof ] 
Starting from 

1

1

2 1
1

zs
T z

−

−

−
=

+  
and evaluating z  on the unit circle, i.e. j Tz e ω= , one get 

2 1
1

j T

j T

ej
T e

− ω

− ω

−
ω =

+
  which, after factorization, becomes: 

2 2 2

2 2 2

2

T T Tj j j

T T Tj j j

e e e
j

T
e e e

− ω ω − ω

− ω ω − ω

⎛ ⎞
−⎜ ⎟

⎝ ⎠ω =
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 

Using the Euler relations one obtain 

2 2
2

2 2
2

2
2 sin

2 2 22 tan
2cos

22
2

T Tj jTj

T Tj jTj

e ee j Tj
Tj j j

TT T T
e ee

ω − ω
− ω

ω − ω
− ω

⎛ ⎞
−⎜ ⎟ ω⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ω⎛ ⎞⎝ ⎠ ⎝ ⎠ω = = = ⎜ ⎟ω⎛ ⎞ ⎛ ⎞ ⎝ ⎠
+ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠

 

and finally 2 tan
2

d

T
ω⎛ ⎞ω = ⎜ ⎟

⎝ ⎠
 

 

[ alternative proof ] 

From expression (179) and solving in order to ω . 

This frequency distortion tends to be negligible for higher sampling frequencies. 

In fact, observe figure 48. As one can see, by selecting a sufficiently high 

sampling frequency, the effect of distortion is minimized. Specifically, for 

sampling frequencies greater than twenty times the system bandwidth, the 

distortion is kept below 1% 

2.3.2.3 Pole-Zero mapping 

Another method for converting a transfer function, from the Laplace domain into 

the z  domain, is based on the relationship between plans s  and z . That is a 

pole or zero at s a=  is converted into a pole or zero at aTz e= . Thus, knowing 

the analog transfer function singularities location, it’s possible to establish a 

discrete transfer function whose poles and zeros are the poles and zeros of the 
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original transfer function transformed by the relationship (162). This technique is 

easy to apply and the algebraic manipulation can be summarized in the three 

following points: 

 Begin by mapping out all the finite poles and zeros in accordance to the 

relationship sTz e= . 

 If the numerator order is less than the denominator (which happens 

often) add zeros in 1z = −  until both terms have the same degree [6]. 

With the introduction of these "artificial" zeros at the Nyquist frequency 

the digital system frequency response at 1
0 2−ω→ ω  is similar to the 

analog at ω→∞  

 Finally set up the DC gain so that both transfer functions have the same 

value. 

 

Fig 48. Frequency distortion due to bilinear transformation. Below right, the 
graphic detail of the relative error. 

To illustrate the procedure consider the following case: 

3 2

1( )
2 2
sG s

s s s
+

=
+ +

  

Factoring the transfer function: 
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( ) ( )( )2

1 1( )
1 12 2

s sG s
s s j s js s s

+ +
= =

+ + + −+ +
  

Converting finite poles and zeros (assuming a unit sampling period) one 

obtains: 

( )( )( ) ( )( )
1 1

0 1 1 2 1 2
( )

1 2 cos(1)j j

z e z eG z
z e z e z e z z e z e

− −

− + − − − −

− −
= =

− − − − − ⋅ +
  

Introducing two more zeros in 1z = −  

( )( )
( )( )

2 1

2 1 2

2 1
( )

1 2 cos(1)

z z z e
G z

z z e z e

−

− −

+ + −
=

− − ⋅ +
  

Finally, adjusting the gain so that 
0 1

( ) ( 1) ( ) 0.5
s z

sG s z G z
= =
= − =  becomes, 

( )( )
( )( )

2 1 3 2

3 22 1 2

2 1 0.146 0.238 0.039 0.054( ) 0.146
1.398 0.533 0.1351 2 cos(1)

z z z e z z zG z
z z zz z e z e

−

− −

+ + − + + −
=

− + −− − ⋅ +

 

If ( )G z  was the transfer function of a digital controller, the difference equation 

that would be implemented in a digital processor is obtained by: 
1 2 3

1 2 3

( ) 0.146 0.238 0.039 0.054( )
( ) 1 1.398 0.533 0.135

U z z z zG z
E z z z z

− − −

− − −

+ + −
= =

− + −
  

and applying the inverse transform of z  one get: 

[ ] 1.398 [ 1] 0.533 [ 2] 0.135 [ 3]
0.146 [ ] 0.238 [ 1] 0.039 [ 2] 0.054 [ 3]

u k u k u k u k
e k e k e k e k

= − − − + − +
+ + − + − − −

  

where [ ]u k  refers to the control signal applied to the process at time t kT=  and 

[ ]e k  the error signal obtained at time t kT= . As you may suspect there is a 

slight problem here. The control signal applied at the instant k  depends on the 

error signal also at the same instant. This would be irrelevant if the "hardware" 

process inputs, outputs and perform the calculations in zero time. However this 

is impossible. Thus, in order to account for the delay introduced by the system, 

one considers that, during a sampling instant, the machine should have enough 

time to perform all necessary operations. For example if a control variable is 

sampled every second, then the hardware have, theoretically, a second to carry 

out all the data transmission and processing operations. 

Thus, in order to analyse the controller performance obtained by analog 
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controller discretization, the effect of computer time delay must be taken into 

consideration. Thus, a slight change to the previously presented discretization 

technique is presented. This modification refers specifically in adding fictitious 

zeros to the transfer function. In order to maintain one sample delay between 

input and output, the relative degree of the transfer function must be one. That 

is for strictly proper systems, zeros at 1z =  will be added until the denominator 

degree exceed, by one, the numerator degree [6]. In the case of proper 

systems, such as lead and lag controllers, the numerator degree is identical to 

the denominator. In this case it’s not possible to add zeros. Additionally it seems 

even to be an extra zero. This problem is solved by adding a delay to the 

transfer function by introducing a pole. The pole should be added in order to 

have, as little as possible, influence into the system dynamic response. On the 

s  plane that location would be s = −∞ . The z  plane equivalent location is, 

obviously, 0z = . 

2.4 Sample Period Choice 

The sampling frequency choice is not a trivial task. However, when the 

sampling theorem was derived, things seemed simple: one choose a sampling 

frequency that is greater than twice the maximum frequency component in the 

signal. However, a closer look reveals that things are not so obvious. First one 

need to know the signal maximum frequency component. How to do it?  

One possibility could be carried out using a microprocessor and running the 

FFT on the signal. However this alternative is flawed because, to be 

implemented, the signal must already be sampled. On the other hand, and 

unlike the examples shown, the spectrum of a real signal never ends abruptly at 

a given frequency. Typically, the actual spectra extend from minus infinity to 

plus infinity. Some of these components can be part of the observable 

phenomenon but, most is due to noise that overlaps the signal of interest. Noise 

can arise in various parts of the spectrum and can be due to several 

phenomena including thermal agitation, magnetic induction, etc. Thus, there is 

some impossibility of knowing exactly what the upper limit of the signal is. 

Moreover, there will always be sidebands overlap. 



DIGITAL CONTROL 

jpcoelho@ipb.pt 118

[ note ] The FFT can be used to verify the existence of aliasing. If, after 

computing the FFT, there are frequency components with significant 

energy very close to the Nyquist frequency then there is a strong 

possibility that aliasing has occurred. 

As already said, the choice of the sampling period is critical in digital control. 

The design of digital controllers by emulation start from the analog controller 

transfer function and is discretized using one of the technique already reviewed. 

Since the digital controller quality of approximation, regarding the analog 

controller, increases with increasing sampling frequency is clear that the 

sampling period influences the performance of the controller such as: 

 Set-point tracking; 

 Load disturbance rejection and measurement noise; 

 Sensitivity to non-modeled dynamics. 

If, by one hand, it is desirable to have a high sampling frequency on the other 

this value should be limited to the minimum necessary to carry out the 

numerical calculations. In fact, the algorithm computational load along with 

processor performance sets up the upper limit of the sampling period. Taking 

into consideration that the "hardware" has the capacity to meet any demand 

imposed by the system, some guidelines have been proposed, more or less 

empirical, for the choice of the sampling period. 

It is often recommended in literature, a sampling period between one tenth to 

one fourth of the system rise time. That is,  

10 4
R RT TT< <  (181)

The same is to say that the sampling period should be chosen so that [1]: 

0.2 0.6

ncl ncl

T< <
ω ω

 (182)

where nclω  refers to the natural frequency of the dominant closed loop poles. 

Another rule of thumb, used frequently in digital signal processing, states that 

the sampling frequency should be five times higher than the highest frequency 

component where one wants to have identical analog and digital filter features. 



DIGITAL CONTROL 

www.ipb.pt/~jpcoelho/download.htm 119

That is: 

5o Hω ≥ ⋅ω  (183)

For example, for a low pass filter, Hω  can be equal to five times the bandwidth. 

This implies that the digital filter will behave in a similar fashion to the analog 

one until around twenty-five times the bandwidth. Thus, a conservative rule 

states that the sampling frequency should have a minimum of 20 times the 

closed-loop bandwidth and a maximum of 40 times the same bandwidth, 

20 40cl o clBW BW⋅ ≤ ω ≤ ⋅  (184)

On the other hand, as we saw in the section concerning signal reconstruction, a 

D/A converter is often put between the controller and the continuous system. 

This retention implies, as has been seen, that the control signal is delayed an 

amount approximately equal to half the sampling period. As expected, this delay 

affects the phase margin and then the system stability. Thus, a rule for choosing 

the sampling period indicates that the deterioration of stability, by the zero-

order, holder is small and tolerable if the time delay is less than a tenth of the 

rise time. That is, 

2 10 5
R RT TT T≤ ⇒ ≤              (Compare to (181)) (185)

The relationship between the zero-order hold phase margin degradation and the 

sampling period can be analyzed by an alternative approach. As already be 

seen, the dynamics of a ZOH can be approximated by: 

2 2( ) ( )
T Ts j

zoh zohs j
G s T e G j T e

− − ω

= ω
≈ ⋅ ⇒ ω ≈ ⋅  (186)

Assuming that the phase margin degradation imposed by this element must be 

contained between 5º and 10º that is, 

5º 10º
180 2 180gc

Tπ π
× < ω < ×  (187)

which implies that 

2 25º 10º
180 180gc gc

Tπ π
× < < ×

⋅ω ⋅ω
 (188)
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By considering the gain crossover frequency (in open loop) equal to the system 

bandwidth one gets that the phase margin decrease, due to the zero-order hold, 

is limited by: 

2
18 18cl gc

T
BW BW
π π

< <
⋅ ⋅

 (189)

leading to: 

18 36cl o clBW BW⋅ < ω < ⋅              (Compare  to (184)) (190)

2.5 Digital Control Systems Analysis 

Effectively this section deals with hybrid systems:, systems composed of both 

discrete and continuous-time components. One will show the closed loop 

transfer function for some of the most common feedback control topologies. 

Finally section § 2.5.3 presents two algebraic techniques to analyze the system 

stability in the z  domain. 

2.5.1 Open-loop sampled systems 

Usually, in digital control systems co-exist, simultaneously, continuous and 

discrete transfer functions. The way to handle this situation is based on the 

introduction of "dummy" samplers for the variables of interest. That is, despite 

continuous in time, one considers their values only at discrete time instants [10]. 

In this section we present four different cases of open-loop hybrid systems. 

CASE I: Open-loop sampled system. 

 

Fig 49. Simple system sampled in open loop. Note that the sampler output is 
fictitious and is in phase with the sampler with physical existence. 

Observation of the previous figure leads to the following variables relationship: 
*( ) ( ) ( )Y s G s E s= ⋅  (191)
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This system z  analysis starts from the fictitious sampling of ( )Y s  (Shown 

dashed in above figure). Thus, applying the starred transform to equation (191) 

one gets: 
** *( ) ( ) ( )Y s G s E s⎡ ⎤= ⋅⎣ ⎦  (192)

In this context one could of * as a kind of sampling operator. After this 

"operator" all the already sampled variables can be factored out of the 

operation. This is because the synchronized sampling of an sampled signal is 

the same sampled signal. Thus, the previous expression takes the following 

form: 
* * *( ) ( ) ( )Y s G s E s= ⋅  (193)

Due to the relationship between the starred and z  transform, the previous 

equation can be rewritten as: 

( ) ( ) ( ) sTz e
Y z G z E z

=
= ⋅  (194)

CASE II: Elements separated by ideal samplers. 

 

Fig 50. Cascade of two systems separated by ideal samplers. It is considered that 
all samplers are in phase. 

In this case, 
*

2( ) ( ) ( )Y s G s D s= ⋅  (195)
and 

*
1( ) ( ) ( )D s G s E s= ⋅  (196)

Applying the star operator to both terms becomes, 
* * *

1( ) ( ) ( )D s G s E s= ⋅  (197)

Replacing the previous result on expression (195) and applying the star one 
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gets: 
* * * *

2 1( ) ( ) ( ) ( )Y s G s G s E s= ⋅ ⋅  (198)

In other words 

1 2( ) ( ) ( ) ( )Y z G z G z E z= ⋅ ⋅  (199)

CASE III: Cascaded elements not separated by samplers. 

 

Fig 51. Cascade elements not separated by ideal samplers 

 

This third case are similar to the previous one but without the sampler between 

1( )G s  and 2 ( )G s . The analysis to the above system leads to: 

2( ) ( ) ( )Y s G s D s= ⋅  (200)
and 

*
1( ) ( ) ( )D s G s E s= ⋅  (201)

Replacing (201) into (200) one obtains: 
*

2 1( ) ( ) ( ) ( )Y s G s G s E s= ⋅ ⋅  (202)

Applying the star is transformed into 
** *

2 1( ) ( ) ( ) ( )Y s G s G s E s⎡ ⎤= ⋅ ⋅⎣ ⎦  (203)

which leads to: 

[ ] *** * *
2 1 2 1( ) ( ) ( ) ( ) ( ) ( )Y s E s G s G s E s G G s= ⋅ ⋅ = ⋅  (204)

where 
*

2 1( )G G s  regards the starred transform of the product between 1( )G s  and 

2 ( )G s . 

Often common sense misleads us. From the expression (203) one may be 

tempted to say that 
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[ ]** * * * *
2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )Y s E s G s G s E s G s G s= ⋅ ⋅ = ⋅ ⋅  (205)

But that’s wrong. This is because, as already seen, in general 

{ } { } { }1 2 1 2( ) ( ) ( ) ( )G s G s G s G s⋅ ≠ ⋅Z Z Z  (206)

That is, 
** *

1 2 1 2( ) ( ) ( )G s G s G G s⋅ ≠  (207)

Case IV: Cascaded elements separated by samplers and excited by 

continuous signals. 

 

Fig 52. Cascade elements excited by continuous signal in time. 

From the previous figure the following expression is derived: 
*

2( ) ( ) ( )Y s G s D s= ⋅  (208)
and 

1( ) ( ) ( )D s G s E s= ⋅  (209)

Applying the starred transform to the previous equation one gets, 
**

1( ) ( )D s G E s=  (210)

Substituting the last result in (208) lead to, 
*

2 1( ) ( ) ( )Y s G s G E s= ⋅  (211)

Finally, applying the starred transform to (211): 
** *

2 1( ) ( ) ( )Y s G s G E s= ⋅  (212)

Since, usually, 
*

1 ( )G E s  cannot be factored in * *
1 ( ) ( )G s E s⋅  the system of figure 

52 does not admit representation in transfer function format. 

From the analysis of these four cases there are three important concepts to 

remember: 
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 The sampling of a sampled signal results in the sampled signal: 
** *( ) ( )E s E s⎡ ⎤ =⎣ ⎦  (213)

 Normally the sampling of the product of two signals is different from the 

product of the sampled signals, 

[ ]* * * *
1 2 1 2 1 2( ) ( ) ( ) ( ) ( )E s E s E E s E s E s⋅ = ≠ ⋅  (214)

 It is not possible to derive a transfer function if the signals applied 

upstream to continuous systems are not previously sampled [13]. 

2.5.2 Closed-loop sampled systems 

Finding the transfer function for sampled systems is not a trivial task since there 

is no transfer function for the ideal sampler [13]. This statement is even more 

pronounced when it comes to closed loop sampled systems. Depending on the 

operations sequence, it is possible to reach a point where input/output variables 

factorization is not possible implying the impossibility of obtaining a system 

transfer function. To illustrate this situation consider the following closed-loop 

control system: 

 

Fig 53. Feedback system with an ideal sampler in the loop 

From the block diagram one can write: 
*( ) ( ) ( )Y s G s E s= ⋅  (215)

and 

( ) ( ) ( ) ( )E s R s H s Y s= − ⋅  (216)

Replacing (216) in (215) by first applying the starred transform to ( )E s  one 
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obtain: 
**( ) ( ) ( ) ( ) ( )Y s G s R s G s HY s= − ⋅  (217)

By applying the starred transform to ( )Y s  leads to, 
** * * *( ) ( ) ( ) ( ) ( )Y s G s R s G s HY s= − ⋅  (218)

Since 
*

( )HY s  can’t be factored, the previous expression cannot be solved for 
*( )Y s  and, therefore, it’s not possible to compute the transfer function. 

On the other hand, rewriting the equation (216) as, 
*( ) ( ) ( ) ( ) ( )E s R s H s G s E s= − ⋅ ⋅  (219)

and taking the starred transform one obtain, 
** * *( ) ( ) ( ) ( )E s R s HG s E s= − ⋅  (220)

This leads to, 
*

*
*

( )( )
1 ( )

R sE s
HG s

=
+

 (221)

replacing *( )E s  is in (215), 

*

*
( )( ) ( )

1 ( )

R sY s G s
HG s

= ⋅
+

 (222)

Now applying the starred transformed to (222) 
*

* *
*

( )( ) ( )
1 ( )

R sY s G s
HG s

= ⋅
+

 (223)

i.e. 

( )( ) ( )
1 ( )

R zY z G z
HG z

= ⋅
+

 (224)

We conclude by saying that there is a need for special care in handling variable 

and the starred transform application sequence.  

Thus, in order to make easy the analysis of such systems, the following 

algorithm is presented [13]: 

Step 1 of 3: Represent all the samplers input by a variable name; 

Step 2 of 3: Write these variables as a function of each sampler output; 

Step 3 of 3: Apply the starred transform. 
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2.5.3 Algebraic techniques for stability analysis 

As referred in section § 2.3.1.2, a discrete system, causal, linear and time-

invariant is stable if all the characteristic equation roots have a module less than 

unity. That is the discrete system poles should be located inside the unit radius 

circumference. However, such an analysis involves the calculation of all system 

modes which may be irrelevant or difficult to deal. Of course, this statement 

considers the treatment of a problem in algebraic rather than numerical form. 

This section presents two algebraic techniques to analyze the stability of 

discrete-time systems. Both techniques have in common that they do not 

require explicit calculation of the system poles. 

2.5.3.1 Routh-Hurwitz criterion for discrete-time systems 

It is known that in a continuous-time LTI system, the stability limit is the 

imaginary axis while in a discrete system the stability bound is a geometric unit 

radius circle. Thus, stability analysis techniques used for continuous systems 

cannot be applied directly to discrete systems. However this problem can be 

circumvented by transforming the discrete system into a continuous one using, 

for example, the (inverse) bilinear transformation. 

2
2

Tsz
Ts

+
→

−
 (225)

With this strategy the unit circle of the plane z  is transformed into the jω  axis. 

Hence the stability bound becomes the same as the analog system. For this 

reason it’s now possible to use continuous-time stability analysis techniques. 

Among the universe of existing techniques, in this curricular unit, one focus on 

the Routh-Hurwitz criterion. The application of the Routh criterion for a discrete 

system is done by following the steps: 

Step 1 of 3: Determine the closed-loop system transfer function; 

Step 2 of 3: Apply the transformation expressed in equation (225); 

Step 3 of 3: Apply the Routh criterion following the same procedure than 

for continuous systems (see text box in section § 1.2.5.1). 

As for the continuous case, the Routh criterion can be used to determine the 

discrete system critical gain. That is the gain for which the roots cross the 
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imaginary axis. This value of gain is the gain to which the system is marginally 

stable and hence can be used to determine the critical frequency. However, for 

discrete systems, the critical frequency found using the previous algorithm has 

to be transformed in order to find the exact discrete-time system critical 

frequency. This transformation is performed using the relationship, 

12 tan
2d T− ω⎛ ⎞ω = ⋅ ⎜ ⎟

⎝ ⎠
 (226)

2.5.3.2 Jury’s Criterion 

As seen in the previous section, stability analysis of discrete systems can be 

performed using an adaptation of the classical Routh criterion. However the 

application of this technique requires the transformation of z  to s  which may 

lead to a lot of algebra manipulation. An alternative stability analysis technique, 

which can be used directly in discrete-time systems, is the Jury stability test. 

Thus, consider a discrete system characteristic equation with the form: 
1

1 0( ) 0 , 0n n
n n nQ z a z a z a a−

−= + + + = >  (227)
The Jury table is formed by using the polynomial ( )Q z  as follows: 

0 1 2 1

0 1 2 1

1 2 1 0

0 1 2 1

1 2 3 0

0 1 2

n n

n n

n n n

n

n n n

n

z z z z z
a a a a a
a a a a a
b b b b

b b b b
c c c

−

−

− −

−

− − −

−

 

(228)

where 

0 n k
k

n k

a a
b

a a
−= , 0 1

1

n k
k

n k

b b
c

b b
− −

−

=  and 0 2

2

n k
k

n k

c c
d

c c
− −

−

=  (229)

Note that the number of Jury’s table rows is equal to 2( 1) 1n − − . The necessary 

and sufficient conditions for discrete system stability are: 

0

0 1

0 2

(1) 0
( 1) ( 1) 0n

n

n

n

Q
Q

a a

b b

c c
−

−

>

− − >

<

>

>

 (230)
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The Jury criterion can be applied as follows: 

Step 1 of 2: Check the first three conditions of (230). If any is violated 

stop the process and conclude that the system is unstable. 

Otherwise go to the next item  

Step 2 of 2: Construct the Jury table checking, as each row is being 

calculated, the remaining conditions. If any of them is 

violated conclude that the system is unstable. 

2.6 Digital Control Design 

While it is possible to design a digital control system in discrete-time domain, 

one of the most common techniques begins by design an analog controller in 

the continuous-time domain: a strategy called "design by emulation". In this 

technique, one starts to design an analog controller transfer function in order to 

meet the proposed performance criteria. Then, from the obtained continuous-

time transfer function, and using a discretization techniques, one obtain the 

discrete-time equivalent controller and, at the end, the difference equation 

governing the filter behaviour. 

Although, for a good performance of this technique, the system should be over-

sampled, this design technique is very appealing since one can use the 

knowledge of continuous-time controller design. Note however that the digital 

control systems design has additional considerations such as sampling effects, 

quantization and reconstruction. Due to this phenomena influence the system 

closed-loop dynamic behaviour of the emulated discrete controller should not 

coincide exactly with the one anticipated for the analog control system. 

However, for fast sampling and low quantization errors, the behaviour is very 

similar. 

As already said, this section presents a digital controller design technique 

based on the digitization of continuous controllers. In a first phase we analyze 

the effect, of the sampled system elements, on the control loop. More 

specifically we are talking about zero-order holders, anti-aliasing filters and 

quantizers. Later a concrete example will be used to present the basic controller 

“design by emulation” steps. 
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2.6.1 Zero-order hold system impact 

In section § 2.1.4.3 it was noted that a zero-order had, as a side effect, the 

system phase margin deterioration due to the time-delay introduced. As has 

been demonstrated, the time-delay value was in the vicinity of half the sampling 

period. This section steps forward in order to analyze the effect, on a control 

loop, of the zero-order holder. For this consider the analog system of the figure 

below: 

 

Fig 54. Analog control system in closed loop. 

where 

( ) ( ) ( )( )
( ) 1 ( ) ( )cl

Y s K s G sG s
R s K s G s

= =
+

 (231)

refers to its closed-loop transfer function. 

Imagine now that the analog compensator, for example a phase advance 

controller, for various reasons should be replaced by an identical control 

strategy but embedded in a microcontroller. Thus, the "equivalent" scheme, 

from the digital system point-of-view, has the following aspect: 

 

Fig 55. "Equivalent" digital control system of the previous figure. 

Its closed-loop transfer function is: 
*

*

( ) ( )( )( )
( ) 1 ( ) ( )

zoh
cl

zoh

K z GG sY zG z
R z K z GG s

⋅
= =

+ ⋅
 (232)
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where ( )zohG s  refers to the zero-order hold transfer function. 

Consider that the analog controller transfer function ( )K s  was discretized using 

the appropriate technique so that the discretization influence in the closed-loop 

dynamics is negligible. Having said that, one begins by analyzing the system 

unit-step response represented in figure 56. 

 

Fig 56. Step responses of both an analog controller and his digital equivalent. 

As can be seen, not only an overshoot increase is observed, but also the 

settling time increases (remember that both performance criteria are related to 

zeta). Since one ensures that the controller digitalization effect is negligible, the 

difference between the analog and digital transient response can only be due to 

the zero-order hold influence. In fact, the increased instability observed is due to 

a phase margin reduction as shown in Figure 57. 

In numerical terms, the phase decay felt was approximately equal to: 

2
gc

T

ω=ω

φ = ω (Radians)  

Resulting from this phase reduction one would expect an overshoot increase 

which, in fact, was felt (look again at figure 56). In addition, and taking into 

consideration all the study carried out on the zero-order hold dynamics, one 

knows that the phase margin deterioration will decrease with increasing 
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sampling frequency. For that, and other reasons already discussed, the 

sampling period is a parameter with great impact on the digital control systems 

performance. 

 

Fig 57. Frequency response comparison between an analog system and its 
digitized version (by the method of the step response invariance). 

Concluding, the zero-order hold has a slightly destabilizing effect that can be 

overlooked or, alternatively, included in the design process. As a rule, and due 

to sampling frequencies generally involved, one expects phase margin 

decreases of less than 10º. 

2.6.2 Effect of Anti-Aliasing Filter 

We have already mentioned that a real-world signal is not "well-behaved" 

having frequency components that, theoretically, would extend to infinity. Thus, 

results from the sampling process, one would always expect some aliasing 

signal distortion. 

One way to minimize this phenomenon requires the use of a pre-filter at 

sampler upstream. This filter will attenuate the energy of frequency components 

outside the interest band. Within a wide filter range type usually, and in order to 

minimize the system dynamics disturbance, the choice is a single pole filter with 

transfer function: 
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1( )
2 1

f

o

G s s=
+

ω

 
(233)

In order to analyze the filter introduction effect on the control loop consider 

again the control system of the previous section but now with a first-order pre-

filter placed before the sampler. Figure 58 show the required configuration. 

 

Fig 58. Introduction of an anti-aliasing filter in the loop control. 

The transfer function of this new closed-loop system has the following form, 
*

*

( ) ( )( )( )
( ) 1 ( ) ( )

zoh
cl

f zoh

K z GG sY zG z
R z K z GG G s

⋅
= =

+ ⋅
 (234)

Consider now the system open-loop frequency of the above configuration and 

compare it to the ones illustrated at figures 54 and 55. 

 

Fig 59. Frequency response of open loop, analog and digital systems (with and 
without pre-filter) 

In terms of magnitude, only a small discrepancy is observed very close to the 

Nyquist frequency. In terms of phase, there is a phase margin decrease due to 

the additional delay introduced by the pole. Regarding the analog system, the 
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phase margin deterioration occurs by an amount φ  which can be determined 

by: 

1tan 2
2

gc gc

zoh filtro
o

T −

ω=ω ω=ω

⎛ ⎞ω
φ = φ + φ = ω + ⎜ ⎟ω⎝ ⎠

 (Radians)  

The phase margin deterioration due to the filter can also be attested by an 

increase of step response overshoot (compared to the system without pre-filter). 

The figure below illustrates this fact. 

 

Fig 60. Step response of digital control systems with and without pre-filter. 

The analysis shows that, concerning the behaviour with and without filter, the 

difference in dynamics is almost negligible. To be conservative one can take the 

pre-filter effect in the controller design by increasing the required phase margin. 

Due to the sampling period usually involved, the phase margin is deteriorated 

by an amount less than 6º. 

 

Additionally it is worth reiterating that, in the digital control context, the anti-

aliasing filter serves a very important purpose: to prevent the introduction of 

low-frequency disturbances in the control signal. To illustrate this phenomenon 

consider again the same control system with and without pre-filter. Also 

consider, for each of the two cases, the introduction of monochrome 

measurement error with signal-to-noise ratio of about 6dB and frequency 

slightly greater than twice the sampling frequency. This simulation strategy is 

characterized by figures 61 and 62. 
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For each case, the transfer functions ( )Y z  over ( )N z , is established. For the 

system represented in Figure 61, 
*

*

( ) ( ) ( )( )
1 ( ) ( )

zoh

zoh

GG s K z N zY z
GG s K z

= −
+

 (235)

And for the system represented in figure 62 the transfer function is: 
* *

*

( ) ( ) ( )
( )

1 ( ) ( )
zoh f

f zoh

GG s K z G N s
Y z

GG G s K z

⋅ ⋅
= −

+
 (236)

 

Fig 61. System measurement error contamination without pre-filter. 

 

Fig 62. System measurement error contamination with pre-filter. 

Just because ( )N z  cannot be factored in this last expression, does not mean 

that the simulation cannot be performed [we recommend an analysis to the 

script associated with Figure 63 available on-line in a zip file]. The simulation 

results can be summarized by the step response illustrated in figure 63. 

As expected the low-pass system behaviour was able to minimize the effect, on 

the output, of the measurement error. However, due to the aliasing 

phenomenon, this high-frequency noise becomes bandpass noise. Therefore 

the system fails to eliminate the measurement noise effect. For the digital 

system without pre-filter, the effect of measurement error at the output is very 
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clear. On the other hand, the introduction of a system pre-filter resulted in 

attenuation (by a factor of 5) of the measurement error. 

 

Fig 63. Response of analog and digital systems, with and without pre-filter, to 
out-of-band measurement noise. 

2.6.3 Design by Emulation 

This last section presents a full design-by-emulation strategy for digital 

controllers. The used technique requires the knowledge described in the first 

chapter. This is so because the first step of this procedure begins by designing 

an analog controller. This controller will force, some continuous-time process, to 

meet, in closed-loop, some proposed performance criteria. 

The design-by-emulation procedure can be summarized by the following four 

steps: 

Step 1 of 4: Derive the analog controller 

Step 2 of 4: Choosing the sample period and add the elements 

associated with digital control systems. 

Step 3 of 4: Discretize the control law 

Step 4 of 4: Performance evaluation by simulation. 

From the first step one can foreseen two different situations. One where the 

analog control system already exists and the aim is to convert it into digital. The 

second alternative admits that there is no controller and one must be designed 

from scratch. 
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The second step involves the addition, to the analogue system, of the dynamics 

associated with the elements that surround a digital control strategy. More 

specifically we talk about the A/D converter (modelled by an ideal sampler), the 

D/A converter (usually a ZOH) and the anti-aliasing filter. Please note that the 

additional dynamics effect introduced by the holder and filter can be considered 

in the first step. That is the phase margin deterioration by these elements can 

be taken into consideration during the analog controller design phase. 

Additionally, an appropriate sampling frequency must be selected. Usually this 

frequency selection is based on the closed-loop bandwidth or the step 

response. 

Finally, after controller discretization, the sampled system performance should 

be evaluated. This assessment must be carried out given the control system 

relative stability as well as transient and steady-state responses. After ending 

the design iterative process, the controller transfer function must be converted 

into a difference equation for embed in a digital system processor. This last step 

may require the controller parameters round-off effect due to processor finite 

precision. There are some difference equation implementation strategies that try 

to minimize this effect [9] [13]. 

In order to illustrate the above discussed design procedure, the project-by-

emulation of a digital controller, is presented. So, consider a open-loop system 

with the following transfer function: 

( )( )2
76( )

1 3
G s

s s
=

+ +
 (237)

The performance criteria to be met are: 

• 10%sse < ; 

• [ ]1,2BW ∈ rad/s  ; 

• 45ºmP ≈  . 

We begin the design procedure by first showing, in figure 64, the open-loop 

system Bode plot. The gain crossover frequency is approximately equal to 3.5 

rad / s and phase margin is around 7º. As The phase margin is very low and the 

closed-loop bandwidth is too high (empirically 2 gcω ). These considerations 

suggest the use of phase lag compensator. 
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Fig 64. Open-loop system frequency response. 

From the steady-state error one verify that the controller gain should obey the 

following restriction: 

( )
1 0.1 1.07

1 76 9sse K
K

= < ⇒ >
+

 (238)

Let’s consider 2K = . In addition, and because we want a bandwidth between 1 

and 2 rad / s, say 1.5 rad / s, and given the already stated rule of thumb (see 

equation (50)), the controller should make the gain crossover frequency to be 

0.75 rad/sgcω = . The figure below shows the frequency response of the system 

in series with the gain. 

 

Fig 65. Frequency response of ( )KG s  

At frequency gcω = ω  one verify that the gain is equal to 22dB and the phase 
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equal to 65 degrees. Thus it is necessary to reduce the gain, at 0.75 rad/s 

frequency, of 22dB. Since you cannot change the DC gain, the desired 

frequency attenuation will be handled by a pole. It is known that an attenuation 

imposed by a pole is approximately equal to 20 dB per decade starting from the 

pole’s frequency. So in this case, the pole should be placed a decade before of 

the frequency of interest. More specifically at, 

( )
1

222 2010 1 0.06p gc

−
⎛ ⎞ω = ω ⋅ − ≈⎜ ⎟
⎝ ⎠

 (239)

For this case, the new open-loop frequency response is presented below in 

figure 66. 

 

Fig 66. Frequency response of ( )1( ) 1pKG s s−ω +  

Now remains to increase the phase margin from 29.5 degrees to 45 degrees. 

However, since the controller is digital, to this value the effect of the ZOH and 

anti-aliasing filter will be added. Considering a sampling frequency of thirty 

times the closed-loop system bandwidth, closed-loop system, that is 

0 30 1.5 45ω = × = rad/s  then, 

1180º 0.750.75 tan 2 3º 2º 5º
45 45zoh filtro

− ⎛ ⎞φ = φ + φ = + = + =⎜ ⎟
⎝ ⎠

  

Thus, the phase lead is no longer 15.4° but rises to 20.4º. The phase lead is 

obtained by adding a zero to the system. If, at crossover frequency, the phase 

must increases 20.4 ° is necessary to set a zero at: 

( )
2.02

tan 20.4º
gc

z

ω
ω = ≈  (240)
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It is expected, due to the zero insertion, a gain crossover frequency increase. 

However, given that the phase lead required is less than 45º, the magnitude 

drift will not be very significant (certainly less than 3dB!). More specifically it is 

expected an increase in the magnitude of the frequency response of a factor 

equal to 

2

1020log 1 0.6 dB =1.06
2.02

gc
⎛ ⎞ω⎛ ⎞⎜ ⎟+ ≈ ⇒ Δ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (241)

Since the DC gain criterion was slightly over-sized, you can reduce it to 94% of 

its value, ie 2 1.06 1.87K = =  leading to the final controller transfer function: 

0.497 1( ) 1.874
16.9 1

sK s
s
+

=
+

 (242)

The new open-loop frequency response has now the following profile: 

 

Fig 67. Frequency response of open loop end 

Below, in figure 68, the closed loop step response is represented and, at figure 

69, the closed loop frequency response (for unity feedback) is drawn. 

As one can see, both steady-state error and phase margin criteria have been 

met. Additionally, from the figure 69, one can also conclude that the closed-loop 

system bandwidth is between the desired limits. 

The next step is to discretize the controller transfer function followed by a full 

closed-loop system simulation. The controller discretization is typically 

performed by using the bilinear transform or backward Euler's method. In this 
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case one choose the Tustin method and neglecting the “warping” phenomenon 

(we have seen that for the chosen sampling frequency, this phenomenon is 

limited to 1%). From the discretization process follows that: 
1

1

0.0626 0.047( )
1 0.992

zK z
z

−

−

− ⋅
=

− ⋅
 (243)

 

Fig 1. Closed-loop step response. 

 

Fig 2. Closed-loop frequency response. 

Considering the effect of ZOH and anti-aliasing filter (the process in series with 

the zero-order is discretized using the z transform) we obtain the following 

results illustrated by figures 70, 71 and 72. 
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Fig 3. Digital control system closed-loop step response. 

 

Fig 4. Digital control system open-loop frequency response. 

 

Fig 5. Digital control closed-loop frequency response. 
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We conclude therefore that, at least in simulation, all the design constraints 

were met. The next step refers to difference equation implementation and 

subsequent analysis of the controller performance "hardware-in-the-loop". 

2.6.3.1 Digital processor effect 

In the example shown the delay introduced by the processor was not 

considered. That is, it was assumed that the processor takes zero time to 

perform the I/O operations and algebraic calculation. However, in reality, this is 

not the case. Thus, depending on the delay effect, this new variable may, or 

may not, be taken into account in the design phase. 

The following equation illustrates exactly what was just said. If the transfer 

function (243) was implemented in a digital processor, the difference equation 

that should be embedded possess the following structure: 

[ ] 0.992 [ 1] 0.0626 [ ] 0.047 [ 1]u k u k e k e k= ⋅ − + ⋅ − ⋅ −  (244)

As can be seen, the calculation of the present output control signal requires the 

present value of the error. In terms of actual implementation this will mean that 

the present value of the error signal would approximate the value of the error 

signal obtained after a sampling instant. This effect would be more evident as 

the sampling period gets smaller. Obviously this approach could have 

devastating effects on the behaviour of the closed-loop system. 

In order to circumvent this problem, the analog controller is designed by taking 

into account the time delay due to information processing. In the case of the 

example reviewed above, this delay is reflected in a deterioration of the phase 

margin equal to: 

6ºgcT−ω ≈  (245)

In this context, a new controller is designed resulting in the following transfer 

function: 
1 2

1

0.07731 - 0.06257( )
1- 0.9918

z zK z
z

− −

−

⋅ ⋅
=

⋅
 (246)

Comparing this last expression with equation (243) one observe the appearing 

of a pole at the origin. This pole is responsible for the delay of a sample of the 
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input signal.  

In order to analyze the performance of this new control system, subsequently a 

set of images are presented in order to show the relative stability of both (243) 

and (246) controllers regarding the processing delay. Additionally the new 

controller open-loop and closed-loop Bode diagrams are presented. 

 

Fig 6. Unit step response of the system (including the processing delay) using 
the controller defined in equation {243} (Controller # 1) and the controller 
using {246} (Controller # 2) 

 

Fig 7. Frequency response for open-loop digital control system. Note the 
maintenance of the gain crossover frequency and phase margin. 
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Fig 8. Frequency response in closed loop. There is a bandwidth within the limits 
imposed by design criteria. 

Figure 73 highlights the relative stability decrease due to the processing effect 

delay. Thus, the act of neglecting this factor contributed to an increase in the 

overshoot equal to 8%. Hence the inclusion, during the design process, of the 

effect of all components that influence the overall dynamics, typically 

contributes to a better designed controller. 
[◄ CHAPTER 2] 
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3  Exercises 

PART I: Analysis and Design of Analog Control Systems 

E1: Relationship between set-point tracking and first order system pole 

location. 

Using MATLAB® analyze the step response of a first order system as a 

function of pole location. For this you should consider the system: 

( ) aG s
s a

=
+

 

for {0.1,1,10,100}a = . What conclusions can you draw? 

E2: Relationship between noise immunity and first order system pole 

location. 

Using MATLAB® analyze the noise immunity of a first order system as a 

function of pole location. For this you should consider the system: 

( ) aG s
s a

=
+

 

for {0.1,1,10,100}a =  and a unity step contaminated with white noise. The 

signal/noise ratio should be 6dB. What conclusions can you draw? 

E3: Frequency response of a first order system. 

Use MATLAB® to obtain the Bode plot for the system: 

( ) aG s
s a

=
+

 

with {0.1,1,10,100}a = . What conclusions can you draw? What are the 

values for the gain and phase margins? 

E4: Effect of σ  to the step response of a second-order system. 

Use MATLAB® to simulate the unity step response of a second order 

Chapter 

E 
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system: 

( )( )
2 2

( ) d

d d

G s
s j s j

ω +σ
=

−σ+ ω −σ− ω
 

for { }0.5; 1; 5σ = − − −  and considering dω  constant and equal to 1. 

Observe what happens to the following performance criteria: 

 Settling Time 

 Rise Time 

 Overshoot 

 Peak Time 

E5: Effect of dω  in the step response of a second order system. 

Use MATLAB® to simulate the unity step response of a second order 

system: 

( )( )
2 2

( ) d

d d

G s
s j s j

ω +σ
=

−σ+ ω −σ− ω
 

for { }0.5,1,5dω =  and considering σ  constant and equal to 1. Observe 

what happens to the following performance criteria: 

 Settling Time 

 Rise Time 

 Overshoot 

 Peak Time 

E6: Effect of nω  in the step response of a second order system. 

Use MATLAB® to simulate the unity step response of a second order 

system: 

2

2 2( )
2

n

n n

G s
s s

ω
=

+ ζω +ω
 

for { }2 2, 2,5 2nω =  and considering 2 2ζ = . Observe what 

happens to the following performance criteria: 

 Settling Time 

 Rise Time 

 Overshoot 

 Peak Time 

E7: Effect of ζ  in the step response of a second-order system. 

Use MATLAB® to simulate the unity step response of a second order 
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system: 

( )( )
2

( ) n
j j

n n

G s
s e s eθ − θ

ω
=

+ω ⋅ +ω ⋅
 

for { }30,45,60 (º )θ =  and considering 2nω = . Observe what happens 

to the following performance criteria: 

 Settling Time 

 Rise Time 

 Overshoot 

 Peak Time 

E8: For each of the subsequent systems, and using the MATLAB®, 

compare the step response of the original system with the one obtained 

from the alternative system approximated by dominant pole(s). 

a) 
( )( )

1( )
0.1 1

G s
s s

=
+ +

 

b) 
( )( )

( 0.2)( )
0.1 1
sG s

s s
+

=
+ +

 

c) 
( )( )( )( )2 2

2810.1 ( 4)( )
3.8 6 2 17 10 29

sG s
s s s s s s

⋅ +
=

+ + + + + +
 

E9: open loop vs. closed loop 

Consider the following transfer function of a plant whose temperature 

must be regulated: 

12( )
0.1

G s
s

=
+
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a) Use SIMULINK® to compute the open and closed-loop system 

response to a sudden change of the reference (0ºC - 100°C). 

b) Simulate the response of both control systems to a step shape 

disturbance load with amplitude equal to -5 º C. 

c) In the block diagram above, Transfer Fcn2 represents the transfer 

function of a thermistor and its signal conditioning system. Analyze 

the effect, on the system response, to a step input with amplitude 

100ºC, if the information provided by the sensor is contaminated with 

unity variance white noise. 

E10: Root-locus analog controller design. 

Consider a system with the following open-loop transfer function: 

0.8( )
1

G s
s

=
+

 

Design a controller so that the system display, in closed loop, the 

following characteristics: 

a) Bandwidth of about 2 rad / s and maximum steady-state error of 

around 5%. 

b) Bandwidth of about 0.5 rad / s and maximum steady-state error of 

around 5%. 

E11: Root-locus analog controller design. 

Consider the following open-loop system transfer function: 

( )( )
5( )

2 3
G s

s s
=

+ +
 

Using the root locus design a controller so that the system display the 

following characteristics. 

 Unit step error less than 0.05 

 Phase Margin = 45 ° 

 Closed-loop bandwidth approximately equal to 6 rad / s. 

E12: Tuning a PID controller using the Ziegler-Nichols rules. 

Consider the following open-loop system: 

( )( )
1( )

1 3
G s

s s s
=

+ +
 



DIGITAL CONTROL 

www.ipb.pt/~jpcoelho/download.htm 149

Project a PID controller using the Ziegler and Nichols tuning rules. 

Additionally, and using MATLAB®, analyze the response of the closed-

loop system (unity feedback) with and without compensation. 

E13: Tuning a PID controller using the Ziegler-Nichols rules. 

Consider the following open-loop system: 

( )
0.1

( )
1

seG s
s

−

=
+

 

Project a PID controller using the Ziegler and Nichols tuning rules. 

Additionally, and using MATLAB®, analyze the response of the closed-

loop system (unity feedback) with and without compensation. 

E14: Analytic PID design. 

Consider the following open-loop system: 

2

400( )
30 200

G s
s s

=
+ +

 

Design a PID controller (analytically) in order the system to display, in 

closed loop, the following characteristics: 

 Error = 0.1 the unit ramp 

 Overshoot = 10% and settling time = 2s. 

E15: Bode plot phase lead controller design. 

Consider the system: 

2

1( )
0.2 0.1

G s
s s

=
+ +

 

Design a controller so that the system display a steady-state error less 

than or equal to 1% and a phase margin of around 45 degrees. 

E16: Phase lead controller design. 

Design a lead controller for the system: 

( )( )2
72( )

1 3
G s

s s
=

+ +
 

so that it displays the following characteristics. 

 Error in steady state (the step) lower than or equal to 0.1 

 Phase margin of 45 ° and bandwidth approximately equal to 1rad / s. 
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E17: Bode plot phase lag controller design. 

Design a lag compensator for the system: 

( )
( )( )2

10 5
( )

15 8 20
s

G s
s s s

+
=

+ + +
 

So the closed-loop system exhibits the following characteristics. 

 Steady-state error less than or equal to 10% 

 Overshoot exceeding 5% 

E18: Design a compensator for the following system: 

( )
10( )

5
G s

s s
=

+
 

So that it displays the following characteristics. 

 Error in steady state (the unit ramp) less than or equal to 5% 

 Phase margin of around 40 º and bandwidth near 2 rad / s 

PART II: Sampling and Reconstruction 

E19: Determine *( )E s  for the following signals: 

a) ( ) ( )e t u t=  

b) ( ) te t e−=  

c) ( )e t t=  

E20: Determine *( )E s  for the following transfer functions: 

a) 
( )( )

1( )
1 2

E s
s s

=
+ +

 

b) 
( ) 2

2( )
1

sE s
s s
+

=
+

 

c) 
( )( )

2 5 6( )
4 5

s sE s
s s s

+ +
=

+ +
 

E21: Determine the transfer function and frequency response of an 

ideal first-order-hold. 
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PART III: Z-Transform 

E22: Determine the Z transform ( )E z  for the following signals: 

a) ( ) ( )e nT u nT=  

b) [ ] ne n e−=  
c) Time-series obtained by sampling ( )e t t=  every second. 

E23: Determine the Z transform for the following transfer functions: 

a) 
( )( )

1( )
1 2

E s
s s

=
+ +

 

b) 
( ) 2

2( )
1

sE s
s s
+

=
+

 

c) 
( )( )

2 5 6( )
4 5

s sE s
s s s

+ +
=

+ +
 

E24: Determine the modified Z transform ( , )E z m  for the systems 

presented in the previous exercise. 

E25: Find the modified Z transform for the following transfer functions: 

a) 
( )( )

0.320( ) , 1
2 5

TseE s T s
s s

−

= =
+ +

 

b) 
( )
( )

0.2

2

2
( )

1

Tss e
E s

s s

−+
=

+
 

c) 
0.75

2

2( ) , 0.2
2 5

seE s T s
s s

−

= =
+ +

 

E26: Determine the discrete sequences ( )e kT  associated with the 

following Z transforms: 

a) 2( )
3 2
zE z

z z
=

− +
 

b) 2

3.894( )
0.6065

zE z
z
−

=
+

 

c) 
( )2( )

1
zE z

z
=

−
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E27: Solve the following difference equations using Z transform 

a) [ ] [ ] [ 1] [ 1]m k e k e k m k= − − − −  
b) [ ] 3 [ 1] 2 [ 2] [ ]x k x k x k e k− − + − =  
c) [ 2] 6 [ 1] 8 [ ] [ ]y k y k y k e k+ − ⋅ + + =  to [0] 1y =  and [1] 2y =  

E28: Consider the discrete system characterized by the difference 

equation: 

[ 1] [ ] [ ]y k a y k b x k+ = ⋅ + ⋅   where  0 1a< <  and [0] 0y =  

a) Determine the impulse response and make a sketch of the result. 

b) Calculate the unit step response and sketch the result. 

c) Determine the static gain of the system. 

E29: Consider the discrete system characterized by the following 

differences equation: 

[ ] [ 1] 0.25 [ 2] [ 1] 0.5 [ 2]y k y k y k x k x k= − − ⋅ − + − + ⋅ −  

Determine the transfer function ( ) ( )Y z X z , identify the poles and zeros 

and represent them in the Z plane. What can we say about system 

stability? 

PART IV: Open-loop discrete-time system response 

E30: Prove that, for a system consisting of an ideal sampler/zero order 

hold with input ( )E s  and output ( )C s , one have ( ) ( ) ( )C z G z E z=  where 
*( ) ( ) ( )G s C s E s= . 

E31: Consider a system consisting of an ideal sampler/zero order 

holder in series with a process with transfer function: 

1( )
1

G s
s

=
+

 

Assuming a unit step input determines ( )C z  and ( )c kT . 
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PART V: Closed-loop discrete-time systems response 

E32: Determine the closed-loop transfer function of the following 

system: 

 

E33: Consider the following closed-loop control systems. Obtain the 

transfer function ( ) ( )C z R z . 

a)  

 
b)  

 

E34: For the following figure compute: 

 

a) ( ) ( )C z R z . 

b) The response ( )C z  for the case where ( )G s a s a= + , 0.5aTe− =  and 

the computer algorithm [ ] [ 1] [ ]u k u k k e k= − + ⋅  and ( ) ( )r t u t= . 
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PART VI: Discrete-time systems stability analysis 

E35: Check for what values K  is the following system is stable. 

 
Note: Consider 0.5Te− =  

a) Using the Routh-Hurwitz criterion for discrete systems. 

b) Using the Jury stability criterion. 

E36: Using the Jury’s criterion characterized the stability of the following 

discrete system. 

3 2

1( )
1.1 0.1 0.2

G z
z z z

=
− − +

 

PART VII: Digital Control Design 

E37: Consider a process with transfer function: 

( )
1( )

1
G s

s s
=

+
 

design a digital controller capable of implementing the transfer function: 

( )( )
70( )

2 1
K s

s s
=

+ +
 

for: 

a) A sampling frequency of 20Hz. 

b) A sampling frequency of 40Hz. 
Note: Use in both cases an approximation of Euler (forward) 

c) Determine, with the MATLAB®, the system response ( ) ( )K s G s  to a 

unit step and compare it with the system response when the 

controller is digital. 
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E38: Consider the following feedback system 

 
where 

2

1( )
2

G s
s s

=
+

 

It is intended that the unity step overshoot in less than 10%, the rise time 

less than 5 seconds and the unit ramp error to lower than 2%. 

a) Under these conditions determine an analog controller transfer 

function in order to satisfy these requirements. 

b) Determine the digital controller transfer function obtained by 

emulation of the continuous controller using the bilinear 

transformation. What sampling frequency should be used? 

 
[◄ EXERCISES] 
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4  Appendices 
 

A1. Laplace Transform 

The Laplace transform is used to convert time domain signals and systems into 

a set of equations expressed in terms of a complex variable commonly 

designated by ' s '. The Laplace transform can be unilateral or bilateral. The 

asymmetry of the unilateral version imply system causality since, in its 

specification, it’s assumed that ( ) 0x t =  for 0t < . 

 

The Laplace transform of a time signal ( )x t  are described mathematically by: 

{ }( ) ( ) ( ) stX s x t x t e dt
+∞

−

−∞

= = ⋅∫L  Version (bilateral)  

or 

{ }
0

( ) ( ) ( ) stX s x t x t e dt
+∞

−= = ⋅∫L  (One-sided version)  

where {}⋅L  refers to the transformation of Laplace. The complex variable s  can 

be decomposed into s j= +σ ω  where σ  is the real part of s  and ω  is the 

imaginary part. The set of values for s  which make the integral convergent is 

called the Laplace transform convergence region. 

 

In the control systems framework, the application of the Laplace transform is 

closely related to the fact that, in most cases, the physical systems dynamics 

are expressed by constant coefficients ordinary differential equations. The 

Laplace transform application to this equations type turns them into simple 

polynomial equations. For example consider the following case: 

( )( ) dx ty t
dt

=   

Chapter 

A 
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The Laplace transform of this differential equation leads to: 

{ }
0

( )( ) ( ) stdx tY s y t e dt
dt

+∞
−= = ∫L   

The antiderivative of the integral’s argument can be computed as , 

( ) ( ) ( )

( ) ( )

st st st st

st st

dx t dx t dx t dP e P e e P P e
dt dt dt dt

x t e s P x t e

− − − −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= + ⋅ ⎣ ⎦

  

and so, 

0

( ) ( ) ( )st stY s x t e s x t e
+∞

+∞− −

−∞
= + ⋅ ∫   

Since, 

0

( ) ( ) stX s x t e dt
+∞

−= ∫   

then 

( ) ( ) (0)Y s sX s x= −   

where (0)x  is the initial value of ( )x t  at time instant 0t = . If all the initial 

conditions are zero then the derivative operation in the time-domain is 

equivalent to multiply by s  in the complex frequency domain. 

 

One can return back to the time domain, from the Laplace domain, by using the 

inverse Laplace transform. This transform is presented formally as a contour 

integral over s j= +σ ω  with the following form: 

1( ) ( )
2

j
st

j

x t X s e ds
j

+ ∞

− ∞

= ⋅∫
σ

σπ
  

And often can be solved using the Cauchy’s residue theorem. 

To conclude this appendix, below are presented some of the fundamental 

properties of the Laplace transform. 
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Linearity 

If 1 1( ) ( )x t X s  and 2 2( ) ( )x t X s  then 

{ } { } { }1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )x t x t x t x t X s X s+ = + = +L L L  

Homogeneity 
If ( ) ( )x t X s  then 

{ } { }( ) ( ) ( )x t x t X s= =L Lα α α ,∀α  

Final Value Theorem 
If ( ) ( )x t X s  then 

0
lim ( ) lim ( )
t s

x t sX s
→∞ →

=
 

Initial Value Theorem 
If ( ) ( )x t X s  then 

0
lim ( ) lim ( )
t s

x t sX s
→ →∞

=
 

Differentiation 
If ( ) ( )x t X s  then 

1

1
1

( ) (0)( )
n kn

n n k
n k

k

d x t d xs X s s
dt dt

−
−

−
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑L

 
Integration 

If ( ) ( )x t X s  then 

[ ]{ } [ ]
1

1

(0)( )( )
kn

n
n n k

k

P xX sP x t
s s − +

=

= +∑L
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A2. Fourier Theory 

The aim of the Fourier transforms is to convert a usually “complex” signal into a 

set of simplest treatment signals. For this the Fourier transform uses 

trigonometric functions as basis functions: the signal is decomposed in a linear 

combination of sinus and co-sinus. In particular, the signal is decomposed  as a 

weighted sum of complex exponentials. The importance of this strategy rests on 

the fact that the linear time-invariant system response to a complex exponential 

signal is still a complex exponential signal with the same frequency and 

probably with different amplitude and phase6. Depending on the involved signal 

type (periodic, aperiodic, etc.) the representation, in terms of complex 

exponentials, can take the following aspects: 

 Fourier series 

Any periodic signal can be written as a weighted sum of harmonically related 

complex exponentials. That is a infinite periodic signal ( )x t  with fundamental 

period oT  can be written as: 

( ) ojk t
k

k

x t C e
+∞

ω

=−∞

= ⋅∑   

where 2
o

oT
π

ω =  refers to the fundamental angular frequency and ( )C k  

represents a weighting function computed by: 

1 ( ) o

o

jk t
k

o T

C x t e dt
T

− ω= ⋅∫   

In other words, the Fourier series coefficients are calculated from the integral 

over one period of the signal. 

 Fourier transform of aperiodic signals 

Aperiodic signals can also be represented as a linear combination of complex 

exponentials. However, in this case, the exponentials are not harmonically 

related but infinitely close in frequency ω  . Thus, if ( )x t  is an aperiodic signal 

that admits representation in the Fourier domain, the synthesis and analysis 

                                                 
6 This property is often given the name of sinusoidal fidelity. 
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equations are: 

1
( ) ( )

F

F
x t X j

−
ω   

( ) ( ) j tX j x t e dt
+∞

− ω

−∞

ω = ⋅∫   

1( ) ( )
2

j tx t X j e d
+∞

ω

−∞

= ω ⋅ ω
π ∫   

 Fourier transform of periodic signals 

If ( )x t  is periodic with period 0T  then, 

( )( ) 2 k o
k

X j C k
+∞

=−∞

ω = π δ ω− ω∑   

where 

1 ( ) o

o

jk t
k

o T

C x t e dt
T

− ω= ⋅∫   

From the previous equations one verifies the existence of a relationship 

between the periodic signal Fourier transform and the series Fourier 

coefficients. That is, in terms of spectral representation, the Fourier transform of 

a periodic signal is always a set of impulses located at multiple harmonics of the 

fundamental frequency and weighted by the factor 2 kCπ . 

Note: For a continuous-time signal to admit Fourier representation it must cope 

with the following three conditions (known as Dirichlet conditions): 

- During a period or finite time interval ( )x t  must have a finite number of 

maxima and minima. 

- During a period or finite time interval ( )x t  must have a finite number of 

discontinuities. 

- The signal must be absolutely integrable, i.e. ( )x t dt
+∞

−∞

< ∞∫  
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 Fourier transform of discrete signals 

A discrete sequence [ ]x n  has Fourier transform ( )jX e ω  given by: 

( ) [ ]j j n

n

X e x n e
+∞

ω − ω

=−∞

= ⋅∑   

if the series exists. The inverse Fourier transform of a discrete signal is: 

1[ ] ( )
2

j j nx n X e e d
π

ω ω

−π

= ω
π ∫   

 Discrete Fourier Transform (DFT) 

The discrete Fourier transform of a discrete-time signal is, itself, a discrete 

sequence and consists of Fourier transform samples taken at N equally spaced 

points in the frequency: 

21

0

[ ] [ ] ,0 1
knN j

N

n

X k x n e k N
π− −

=

= ⋅ ≤ ≤ −∑   

where 

21

0

1[ ] [ ] ,0 1
knN j

N

k

x n X k e n N
N

π−

=

= ⋅ ≤ ≤ −∑   

Note that in the case of discrete-time signals, the frequency ω  actually refers to 

the digital frequency dω . The relationship between analog and digital frequency 

is: 

d Tω = ω⋅   

where T  refers to the sampling period. For an analog frequency equal to the 

sampling frequency (inverse of the sampling period), the digital frequency is 2π  

radians per sample. Moreover, it appears that the Fourier transform for discrete 

signals is periodic with period 2π . In order to validate look to the following proof: 

( 2 ) ( 2 ) 2( ) [ ] [ ] ,j k j k n j n j k n

n n
X e x n e x n e e k

+∞ +∞
ω+ π − ω+ π − ω − π

=−∞ =−∞

= ⋅ = ⋅ ⋅ ∀ ∈∑ ∑   

as n  only takes integer values then 2 cos(2 ) sin(2 ) 1j kne k n j k n− π = π − π =  and so, 

( 2 )( ) [ ] ( )j k j n j

n

X e x n e X e
+∞

ω+ π − ω ω

=−∞

= ⋅ =∑   
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A3. Some Laplace Transform Pairs 

Function Time 
( )e t , 0t >  

Laplace Transform 
( )E s  

( )tδ  1 

0( )t tδ −  0ste−  

( )u t  1
s

 

t  2

1
s

 

2

2
t  3

1
s

 

1kt −  
( 1)!

k

k
s
−  

ate−  
1

s a+
 

att e−⋅  2

1
( )s a+

 

k att e−⋅  
( 1)!
( )k

k
s a
−
+

 

1 ate−−  ( )
a

s s a+
 

1 atet
a

−−
−  2 ( )

a
s s a+

 

( )1 1 atat e−− +  
2

2( )
a

s s a+
 

at bte e− −−  ( )( )
b a

s a s b
−

+ +
 

sin( )at  
2 2

a
s a+

 

cos( )at  
2 2

s
s a+

 

1 sin( )ate bt
b

−  2 2

1
( )s a b+ +

 

cos( )ate bt−  ( )
2 2

2 2( )
a b

s s a b
+

+ +
 

1
( ) ( )

at bte e
ab a a b b b a

− −

+ +
− −

 
1

( )( )s s a s b+ +
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A4. Some transform pairs Z 

Function Time 
( )e t , 0t >  

Z transform 
( )E z  

Modified Z Transform 
( , )E z m  

( )u t  
1

z
z −

 1
1z −

 

t  ( )21
Tz

z −
 

( )21 1
mT Tz
z z

+
− −

 

2

2
t  ( )

2

3

( 1)
2 1

T z z
z

+

−
 

( ) ( )

2 2

2 3

2 1 2
2 1 1 1

T m m
z z z

⎛ ⎞+⎜ ⎟+ +
⎜ ⎟− − −⎝ ⎠

 

1kt −  
1

1
10

lim( 1)
k

k
k aTa

z
a z e

−
−

− −→

∂ ⎛ ⎞− ⎜ ⎟∂ −⎝ ⎠
 

1
1

10
lim( 1)

k amT
k

k aTa

e
a z e

− −
−

− −→

⎛ ⎞∂
− ⎜ ⎟∂ −⎝ ⎠

 

ate−  aT

z
z e−−

 
amT

aT

e
z e

−

−−
 

att e−⋅  ( )2

aT

aT

Tze

z e

−

−−
 ( )( )

( )2

amT aT aT

aT

Te e m z e

z e

− − −

−

+ −

−
 

k att e−⋅  ( 1)
k

k
k aT

z
a z e−

∂ ⎛ ⎞− ⎜ ⎟∂ −⎝ ⎠
 ( 1)

k amT
k

k aT

e
a z e

−

−

⎛ ⎞∂
− ⎜ ⎟∂ −⎝ ⎠

 

1 ate−−  
( )
( )

1

( 1)

aT

aT

z e

z z e

−

−

−

− −
 ( )

1
( 1)

amT

aT

e
z z e

−

−
−

− −
 

1 atet
a

−−
−  

( ) ( )( )
( )2

1 1

( 1)

aT aT aT

aT

z z aT e e aTe

a z z e

− − −

−

− + + − −

− −
 ( ) ( )2

1
( 1)1

amT

aT

T amT e
a z a z ez

−

−

−
+ +

− −−
 

( )1 1 atat e−− +  ( )21

aT

aT aT

z z aTe z
z z e z e

−

− −
− −

− − −
 

( )2

1 1
1

aT
amT

aT aT

amT aTe e
z z e z e

−
−

− −

⎛ ⎞
+⎜ ⎟− +⎜ ⎟− −⎜ ⎟−⎝ ⎠

 

at bte e− −−  
( )

( )( )
aT bT

aT bT

e e z

z e z e

− −

− −

−

− −
 ( ) ( )

amT bmT

aT bT

e e
z e z e

− −

− −
−

− −
 

sin( )at  2

sin( )
2 cos( ) 1
z aT

z z aT− +
 ( )

2

sin( ) sin (1 )
2 cos( ) 1

z amT m aT
z z aT

+ −

− +
 

cos( )at  ( )
2

cos( )
2 cos( ) 1

z z aT
z z aT

−

− +
 

( )
2

cos( ) cos (1 )
2 cos( ) 1

z amT m aT
z z aT

− −

− +
 

1 sin( )ate bt
b

−  ( )2 2

sin( )
2 cos( )

aT

aT aT

ze bT
b z ze bT e

−

− −− +
 ( )( )

( )2 2

sin( ) sin (1 )

2 cos( )

amT aT

aT aT

e z bmT e m bT

b z ze bT e

− −

− −

+ −

− +
 

cos( )ate bt−  
2

2 2

cos( )
2 cos( )

aT

aT aT

z ze bT
z ze bT e

−

− −

−
− +

 ( )
2 2

cos( ) sin((1 ) )

2 cos( )

amT aT

aT aT

e z bmT e m bT

z ze bT e

− −

− −

+ −

− +
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Euler identities, 77 
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gain crossover, 16 
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Geometric progression, 91 
Jury criterion, 129 
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Pade approximation, 81 
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Reconstruction, 72 
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Root locus, 36 
Routh Criterion, 128 
Routh stability criterion, 43 
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Taylor, 75 
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stable 
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