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Chapter

O Introduction and Objectives

IN 1859, Charles Darwin published his theory on the evolution of species,
according to which, the phenotype changes of organisms was due to slow
changes of the medium were those organisms live. In other words, when the
performance criteria changes, the species tend to physically change in order to
adapt to these new conditions. In ecological terms this phenomenon describes

a feedback loop between a species and the environment around it.

The regulation by feedback is not exclusive to biological systems. In fact,
feedback control is the basic mechanism by which systems, whether
mechanical, electrical or biological, maintains its balance. The control actions
taken in this context are based on the difference between the desired state and

current system state, i.e. the adaptation is made according to the error.

This curricular unit deals with the particularity that, in large part of the control
loop, the information is conveyed by an electric signal (analog or digital). This
control strategy is used almost everywhere in man-made machinery. The
following diagram present the fundamental building blocks of a closed loop

digital control system [3] .

P CADEIA DE MEDIDA

_____________________________________________________________________________

APRESENTAQAO

COHDICIOHAMENT O
DE SIHAL

;
'

‘
Tx RI

PROCESSO

i COHVERSOR DE DA
I W

____________________________________________________________________________

Fig 1. Block diagram of a feedback control system.
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It is important to note that every block in this architecture has it proper
dynamics. The control algorithm must deal with the overall dynamic behaviour
equivalent to cascading all the referred elements. However some of them have

almost no impact on the global system dynamic and others may be crucial.
Looking again to figure 1 one can identify three main components. Namely,

=  Measurement chain.
= Actuation chain.

= Control Algorithm.

The measuring chain is the subsystem responsible for the acquisition of the
control variable. This block in built around a sensor element. In turn, the sensor
translate variations of the control variable into variation of any electric property

such voltage, impedance or frequency.

The acquired signal, properly conditioned, will be responsible for providing
information regarding the present system state. This state is compared with the
desired one, resulting in a control signal supplied to the actuation chain. The
command order, after being adapted, will be used to excite some type of
actuator. The actuator performs the opposite role of the sensor: convert a
signal, usually electrical, in another non-electrical. Examples of electric
actuators are the electric motor, in which electrical current is converted into
rotation energy, or pneumatic cylinders, driven by a solenoid valve, where

electrical current is converted, indirectly, into axial displacement.

The block that takes the system state and provides the command signal is
called the compensator or controller. In an electrical perspective, this controller
may be analog or digital (note that, in general, the controller can be of different
nature such as mechanical, pneumatic or hydraulic). Regardless of the
controller nature its operation mode is the similar: to perform algebraic
operations between signals. For analog controller, mathematical operations are
performed using, for example, adders, integrators and differentiators designed
around operational amplifiers. On the other hand, in the case of digital
controllers, the calculations are carried out by logic gates (more specifically

Microprocessors).

2 jpcoelho@ipb.pt
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The operations complexity carried out by the controller can range from a simple
hysteresis comparison (on/off control) to a more elaborate control strategy such
as the three-term control (Proportional-Integral-Derivative). This last technique

will be reviewed in Chapter 1.

In the digital controller field, since it's easier to implement more elaborated
numerical computation routines, more advanced control strategies can be
found. An example of this is a technique known by adaptive control were the
controller adapts to changes in the process dynamics or disturbance. The plant
dynamic changes are sensed and the controller degrees-of-freedom are
adjusted accordingly. Figures 2 and 3 represent both a simple on/off control

strategy and an adaptive one [1].

PROCESSO

REFERENCIA - ONIOFF )
| | I— SAlbA

Fig 2. Block diagram of a control system on / off type

AJUSTE DE
PARAMETROS

REFERENCIA PROCESSO
CONTROLADOR

SAIDA

SINAL DE
CONTROLO

(a) PARAMETROS DO CONTROLADOR

Fig 3. Block diagram of an adaptive control system

At present time, due to the proliferation and low-cost of digital computer
systems and given the enormous benefits associated with it, control systems
based on numeric processors such as DSPs, microcontrollers or
microprocessors dismissed, almost completely, analog controllers of their
functions. For this reason it's important the study of digital control theory on

modern technological courses.
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0.1 Digital Control: What is it about?

The objective of a control system is to force a system to keep, as close as
possible, to the reference state despite possible system disturbances. In order
to do this, the controller generates a signal obtained by algebraic manipulation

of the system state signal.

In this context, the control design strategy is based on the answer to the

following question:

How to establish the relationship between control actions and system

Informagéo }.’ } Accio
]

Until the nineteenth century, the control systems design involved only empirical

information?

knowledge: trial and error and a good dose of intuition. Maxwell in 1868 made
the first rigorous presentation on the control system stability. Thereafter the

control theory has adopted its formal language: mathematics.

Since Maxwell’s stability analysis, and to the present day, numerous people
have contributed to the scientific maturity of control theory. Among them are
Lyapunov, Nyquist, Bode and Popov, just to name a few. The two great wars,
the space race and the telecommunications development were the major
engines that drove, without precedence, new development methods for analysis

and design of control systems.

Digital control appears as an "upgrade” to analog controllers. Besides the limit
on the achievable operations complexity, the limits and tolerances of the
physical components used in analog control was a serious disadvantage. More

specifically the advent of digital control brought the following advantages:

» |ncreased performance
= Lower costs
= Reliability

4 jpcoelho@ipb.pt
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*  Flexibility

Regarding the first item, due to compensator complexity, generally the control
systems performance increases. Additionally, since the digital processors cost
tends to decrease the price of digital controllers are getting lower. Moreover,
given that the controller coefficients are not generated by physical components,
there are no drifts in the controller parameters. Thus we are witnessing an
increase in reliability as well as in the replication capacity of the controllers. The
ability to change, by "software”, the controller parameters reflects a more agile,

and less costly, control strategy.

Returning to the question raised initially, it's actually the study of the theory
underlying the analysis and design of control systems that will move us. More
specifically, since we are concerned with digital control, the mapping
action/information refers to the case where the information feeds a digital
processor who, by its turn, produces the action. Due to the usual analog nature
of the process the information derived by the sensor is time-sampled before
used by the microprocessor. In addition, due to the finite resolution of the
computer core, the information is also quantized. Sampling and quantization are
two exclusive operations of digital control systems whose effects must be
understood. So, the basic objectives that the student should pursue along this

course are:

» Understand discrete-time systems.
» Understanding computer-controlled systems.

= Being able to design digital controllers using classical techniques.

0.2 Document Structure

The subjects addressed in this document are condensed in Chapter 1 and
Chapter 2. These two chapters are complemented by a set of appendices

whose main objective is to make this document more self-contained.

The first Chapter is intended as a review of some basic concepts of continuous
control system theory. The understanding of those concepts will be fundamental
to fully understand discrete-time control systems. The second Chapter presents

the theory of sampling systems and some basic frequency-domain controller

www.ipb.pt/~jpcoelho/download.htm 5
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design techniques.

In each chapter, and whenever relevant, text boxes are presented with
demonstrations and concepts which, although not contemplated in terms of

program content, was found worthwhile to include .
0.3 Pre-requisites

In order to be able to grasp the subjects addressed in this curricular unit, the
student must have some knowledge in the following subject areas:

= Differential and integral calculus;
= Complex analysis;

» Systems and Signals;

Some knowledge on data acquisition systems (A/D and D/A converters), under
the instrumentation point-of-view, are expected. Additionally it's also expected

some experience in using the numeric computation tool MATLAB® ',

[CHAPTER <« 0]

" MATLAB is a trademak of The MathWorks Inc.

6 jpcoelho@ipb.pt



Chapter

1 Continuous-Time Control

1.1 Basic Concepts for Control Systems

THE main motivation, behind the design of a control system, is to force the
system to exhibit a response profile, as consistent as possible, with the one
required. This profile should be as independent, as achievable, to disturbances

that might affect the system.

In order to do this, the majority of control system deigns procedures are based
on a model (usually mathematical) of the process to control. Since the
behaviour of a real dynamic system is often too complex to be modelled
completely, usually only an approximation is used. In general these
approximations rely on a set of assumptions such as linearity and time

invariance.

Usually the dynamic systems behaviour, as well as the signals handled by
them, are described, in the time domain, through a set of differential equations.
For example, in continuous time domain, a signal or deterministic system can

be described by a homogeneous differential equation of the type,

(1)

d"x(t) =f(x(t), dx(t)’dzxgt)’_”’d”‘lx(t))
dt" dt  dt dt"

with initial conditions,

{X 0, 3O X0 d" x<0)} 2)

dt =~ dt2 7 7 dt™!

In the particular case of linear and time invariant systems, its dynamic
behaviour is wusually described by differential equations with constant

coefficients of the form:

J. P. COELHO 7
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d'y,  d"'y@®
" " dt™

where T, >0 refers to a pure time delay.

d"u(t-T,)

T +---+bu(t-T,) (3)

——+--+a,y(t)=b,

[ note ]

Signals can also be described by differential equations. For example consider

the particular case of the 1-D signal x(t)= A-sin(wt+¢). Deriving it twice with

respect to time,

w=A¢o-cos(wt+(p)
dt
dd):(t)— Ao’ -sin (ot +0)

On the other side since A-sin(mt+(p)= X(t) the previous expression takes the

form,
d’x(t)
dt?

The solution of this differential equation is of type:

d? x(t)

=—o - X(1t)=> +o - X(t)=0

X(t)=C,-e'" +C,-e’ 1

Taking into considerations the initial signal and the Euler relation leads to,
x(t) = A-sin((x)t+(p)zi_ej‘p el —A_e""p -e” " Hence,
2] 2)
Cl :A.ejw 5 Cz = _A.eijw
2] 2]

Thus it is easy to see that

X(0) = Cl o t=0 +C2 e =0 Cl +Cz = A'Sin(q)) and
d);(tO) - joC, e]mt ~ joC, e Jmt = joC, — joC, :Aoo-cos((p)

Thus, it can be concluded that x(t) = A-sin(oat+(p) can be represented by the

differential equation:

d’x(t)

pre +o - X(t) =0 subject to initial conditions

dx(0)

(10 - 2500620 )

8 jpcoelho@ipb.pt
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An alternative way of representing a system modelled by differential equations
arises from the application of the Laplace transform. Thus, for a given set of
initial conditions, the generic differential equation presented in (3) is replaced by
the following expression in the Laplace domain? .

NG ), SO

Y&= 56 D(s) @

where

N(s) _ - b s"+b, s"" +---+b,
D(s) s"+a, s"+-+a,

S)

andCl(s) refers to a polynomial in s associated with the initial conditions of the
system. Considering only the forced response, i.e. considering the initial
conditions as zero, the relationship between Y(s) and U(s) is called the
transfer function (TF) and has the shape of the ratio of two polynomials in s as
shown in the following equation.

Y N bs"+b s"'+...4+D
SO S e Bt Tt g (6)
(s) Dq(s) s'+a, S +--+a,

To ensure system causality, the degree of the denominator polynomial must be
greater than, or equal, to the polynomial degree of the numerator, i.e. n>m.

Causality is, of course, closely linked to the system physical existence.

[ note] A system is said to be causal if its response does not depend on future

values of the input signals.

The values of s that turn the ratio (6) equal to zero are called the system zeros.
On the other hand, the values of s that make G(s) infinite are designated by
system poles system. A system with n poles is called a system of order n If it

has | poles at the origin (s=0) then it's a type | system.

[ note ] As one would see further ahead, the system type is closely related to
the order of the polynomial, associated with the input signal, that the

system can follow with finite steady-state error.

Depending on the ratio between the number of poles and the number of zeros

the transfer function can be designated by:

*Itis advised a previous study of Chapter A1 of this document

www.ipb.pt/~jpcoelho/download.htm 9
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= Proper if imG(s)=C <« - In this case there are equal number of finite

poles and zeros;
= Improper if imG(s) =0 - An improper transfer function have more zeros
S—0

than poles;
= Strictly proper if limG(s)=0- This is the case where there are more

finite poles than zeros.

[ note ] Most physical systems are modelled by strictly proper transfer
functions. Moreover, as already said, they all require that the number of
zeros is less than or equal to the number of poles in order to ensure

causality.

Finally note that, in Laplace transform, s is a complex variable of the form
s=o+ jo where o refers to the angular frequency (in radians per second) and
o is a damping coefficient whose value is related to the convergence region of
the Laplace transform. Hence the system poles and zeros can be geometrically
represented on a pair of orthogonal axis: one associated to the real part of the
singularities and other to the imaginary part. This plot is designated by pole-
zero map and, in reality, is just the representation of complex numbers in the

Argand plane.

In a stable system (more on this subject ahead) there is a tight relationship
between the Laplace transform and the Fourier transform. One can say that the

Fourier transform is equal to the Laplace transform if c=0. In this case s= jo
and G(jo) as a function of the frequency ® provides what is known as
frequency response. Since G(jo) is complex, it can be represented by
magnitude and phase plots. The graphs of magnitude and phase of G(jw), as a

function of ®, are frequently designated by Bode plots.
1.1.1 Control System Stability

In control system design, the system stability is a major concern topic and must
always be kept at line-of-sight. The stability of a causal, linear and time-invariant
system can be evaluated from the solution of the characteristic equation. The

characteristic equation is the mathematical equality obtained as D(s)=0. The

roots of D(s), are poles of G(s).

10 jpcoelho@ipb.pt
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A causal, linear and time-invariant system is said asymptotically stable if all its
poles, sometimes called modes, have negative real part. On the other hand, if
there is at least, one pole with positive real part, the system is asymptotically
unstable. In the case a system has one pole with real part equal to zero then

one said he is marginal stable.

[ note ]
A system to be stable it's necessary that its impulse response is absolutely
integrable (absolutely summable on discrete-time systems) [11] [12].

Mathematically this definition is expressed as:
j|h(t)| dt <oo or )’ |h[k]| <o
—» k=—o0

Where h(t) and h[k] denotes de impulse response of continuous and discrete-

time systems respectively. This is also one of the conditions necessary for a

system to admit representation in the Fourier because:
H(jo) = [ h(t)-e dt

and for convergence one needs to have:

I|h(t)|dt <o (one of the Dirichlet conditions [11] [12])

Thus, if a linear time-invariant system with impulse response h(t) admits
representation in Laplace, H(s), the convergence region must includes the jo

axis in order to admits Fourier representation and, by inherence, for the system
to be stable. Note also that, if the system is causal, the region of convergence is
the entire plane to the right of the rightmost pole. So, if a system is linear time-
invariant and causal, it's necessary that all the poles are at the left side of the

jo axis for the system to be asymptotically stable (all the poles must have

negative real parts). Obviously, if a system is not causal, to be stable all the

poles must lay down in the right half-plane!

An alternative stability analysis derives from the system forced response. In that
perspective, a system is said to be bounded input/ bounded output (BIBO)
stable, if his response to a bounded input is bounded. Hence a linear time-

invariant system is BIBO stable if, regardless of the signal profile, an amplitude-

www.ipb.pt/~jpcoelho/download.htm 11
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limited input lead always to an amplitude-limited output.

[ note ] Bounded Input /Bounded Output Stability

Let us assume a linear time-invariant system governed by the equation,

y =T}
where T{} designates a transformation operation over the input signal x(t).
This system is stable in the BIBO sense if, after ensuring that x(t) is limited in
amplitude by a generic finite value, say B, , the response y(t) is also limited in
amplitude by an arbitrary finite value B,. So if [x(t)| < B, <o —|y(t)| < B, <oo,Vt

then the system is BIBO stable.

Note that an asymptotically stable system is BIBO stable but the converse is not
true. Consider, for example, a reducible second order system (one pole and one

zero at the same point) with transfer function,

S+a

SO = 5ra)(s+b)

if a is negative and b positive the system is BIBO stable but it is not asymptotic

stable since the characteristic equation has a pole with positive real part.

[ note] The zeros location in the s plane does not contribute to the system
stability. However there are different designations for systems with all
zeros in the right half-plane and for systems with, at least, one zero in
the left half-plane. The first type are called minimum phase systems

and the latter non-minimum phase systems.

1.1.2 Control systems performance evaluation

The design procedure of a control system is relates to the fulfilment, by the
system under closed-loop, of a set of performance specifications. Those
specifications can be made over two different domains: time domain and
frequency domain. In the former the figures of merit are expressed in terms of
time constraints and in the later, as the name implies, the constraints are
established in terms of frequency. The characteristics that a given system

should exhibit can be defined in one or both domains. Usually, in overall, they

12 jpcoelho@ipb.pt
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impose lower and upper limits to the following system characteristics:
= Speed of response and bandwidth;
= Stability (relative);

= Maximum allowed steady-state error.

In the following three subsections one presents and discusses the most

common performance criteria in control systems.
1.1.2.1 Steady-State performance criteria

The steady-state error performance index is a measure of system accuracy
when referred to a specific excitation signal. Normally three types of input are
considered:

= Unit step (zero-order excitation signal)

= Ramp (first-order excitation signal)

= Parabola (second-order excitation signal)

The response to the first input signal measures the system's ability to react to
rapid changes of the reference signal, and the remaining the system capacity to
follow trajectories. In the time and frequency domain the above signals have the

following mathematical representation:

Step Ramp (gradient m) Parabola
Time r(t)=u(t) r(¢)=m-t-u(t) r(t):%tzu(t)
1 m 1
Frequency R(S) :g R(S) :S—2 R(s) 25_3

The steady-state error (e, ) is the difference between the instantaneous system

response and his steady-state value. For stable systems this value can be
analytically determined using the final-value theorem. This topic will be

discussed in section § 1.1.8.2.

[ note ] Final-value theorem

The final value of the function f(t), whose Laplace transform is F(s), is:

lim f (t) = lim SF ()

www.ipb.pt/~jpcoelho/download.htm 13
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Example: The unity step steady-state error of the first order system,
G(s) = ——
s+a
can be computed by the following set of algebraic operations:
O _ ¢ yg=1
U(s) s+a S
and the error is given by E(s)=U(s)-Y(s)
(00
s(s+a)

E(S)zl_ a =l(1_Lj

s s(s+a) s\ s+a

and

Since Y(3) =

then the steady-state error is given by:

. a . [s+a-a) a-a .
e, =limsE(s)=1-——=1im = (If a=a then e is zero)
50 s+a >0\ s+a a

1.1.2.2 Time Domain specifications

The time domain specifications are usually defined in terms of system response
to a unit step. Among other, the following performance criteria are highlighted:

= Rise Time (T;) - Time required for the unit step system response to raise

from 10% to 90% of its value in steady state.

= Time Delay (T,) - Time required for the system unit step response to

reaches 50% of its value in steady state.

= Settling Time (Ty) - Time required for the unit step system response to

reach, and stay, within a specified percentage of its value in steady state
(typically £ 1%, + 2% or + 5%).

= Time Constant (Predominant) (t) - Refers to an alternative measure of
settling time. For a stable system of order greater than one, the time
constant refers to the time required for the transient response envelope
to reaches 63% of its value in steady state.

= Overshoot (5,) - Is the maximum difference between the transient and
steady state system response to a step input. This criterion is

representative of system relative stability and is usually presented as a

percentage relative to the steady-state value.
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1.1.2.3 Frequency Domain specifications

The most common specifications in the frequency domain are:

= Gain Margin (G,,) and Phase Margin (P, ) - Define a criterion to measure

the system relative stability.

= Bandwidth (BW ) - It is a measure of the system response speed and is
often defined as the range of frequencies over which the gain does not
differ by more than 3dB of its value at a specified frequency.

= Resonance peak (M,) - It is also a measure of relative stability and

refers to the maximum magnitude value of the closed-loop frequency
response. This criterion is closely related to phase margin and often both
quantities are related to the following approximation [6]:

1
Mr——
" 2-sin(P,/2)

[ note ]

Because the models used in control system design are only approximations, it
is not sufficient, to guarantee system stability, that the closed-loop poles are in
the right half-plane. Thus, even if the system is stable, we want to know how
near is from instability. A system with low stability margin is closer to instability
than a system with larger stability margin. Stable systems with low stability
margins only work in simulation (most likely, in practice, the system is unstable).
Usually the systems are destabilized when the gain exceeds a certain threshold
or there is too much phase lag. The gain and phase tolerances are referred as

gain and phase margins.

The gain margin (G, )is defined as the magnitude of the inverse open-loop
transfer function evaluated at frequency o_: the frequency in which the phase
angle is -180 ° (phase crossover frequency),

G, =[6(io) |

On the other hand, phase margin (P, ) is defined as 180 ° plus the phase angle
of the open-loop transfer function at frequency o : the frequency at which the

gain is unity (gain crossover frequency),
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P = 180+arg(G(jm))‘

0=04; (0.[G (jo)=1)
Empirically it is desirable that the system phase margin is between 45 ° and 60°
and the gain margin between 2 and 4 (6 to 12 dB),

45°< P <60° e 6dB<G, <12dB

When the open-loop frequency response produces a phase shift of 180 ° there
is a risk of instability if the gain is above unity. More specifically the system is
closed-loop unstable if:

G, <0 and P, <0

In some circumstances, the gain and phase margins cannot be used as system
instability indicators. For example in first and second-order systems phase

never crosses the line of 180 degrees so the gain margin is always infinite.

1.1.3 Open-loop first-order systems

Understanding the behaviour, both in time and frequency domain, of first and
second order systems is very important in analysis and design of control
systems. This is because many physical systems have dynamics that can be

approximated to the ones of first or second order systems.

A first-order system has only one pole and has the following generic transfer

function:

a
G(s) —m (7)

where the pole is located at s=-a.

The impulse system response has the following mathematical formulation:
L
ht)=a-eu(t)=a-e “u(t) (8)

From this last relation one concludes that the first order system time constant is

equal to the inverse of the poles’s absolute value. On the other hand, its

bandwidth is equal to the magnitude of the pole: BW =|a|.

Thus in a first-order system, t=BW™ which means that the higher the
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bandwidth, the smaller the time constant and the faster is the system response.

For some of the performance criteria discussed in section § 1.1.2.2 is easy to

see that, in a first-order system, the rise time is approximately equal to:

To=22-1

and the delay time approximately equal to:

T, ~0.69-1
1.1.4 Open-loop second order systems

The transfer functions of second order are of vital importance in control systems
design since the specifications (performance criteria to be met) are normally
provied assuming the system is second order. The canonical transfer function

for a second-order system has the following aspect:

2
Q)

X (9)

s*+2Lm,S + )

G(s)=

where o, is called the undamped natural frequency and ¢ (zeta) the damping

ratio.

It is easy to verify that the two poles of this transfer function are located in:

s=—(w,tj-0,1-C =0t jo, (10)

where o, is called the damped natural frequency.

Depending on the damping ratio, the system may have:

=  Two distinct pure real poles (£ >1) - Over-damped system
= Two identical real poles (£ =1) - Critically damped system

= Two complex conjugate poles (0<( <1) - System under-damped.

The figure below illustrates the position of the poles of a canonical second order
system, as a function of the damping factor. It should be noted that for values (
below zero, the poles of the system occur in the right half plane indicating an

unstable system.
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Imagis)

Fig 4. Location of a second-order system poles as a function of ¢

[ note ] As we will see later, there is a close relationship between the phase

margin and the damping factor in closed loop (&, ). Thus, if £, <0 the

phase margin is negative. This implies instability of the closed-loop

system.

Below is a set of functional relationships that allow to directly compute the
values of some of the performance criteria established in § 1.1.2.2 and §
1.1.2.3:

= Percentage of overshoot

- ] -1/2
8521oo.e[ et :g:(nz[ln(IOO/SS)]zﬂ) (11)
= Settling time
Ts (£1%) = 4.6/|o| or T, (£2%) =4/|c| (12)
» Rise Time
T, =1.8/0, (13)
= Time Constant
=1/l (14)
= Bandwidth

The bandwidth depends on the natural frequency and (:

BW = o, [1-2@2 +(2-4C +4g‘*)“2}”2 (15)

However, for 0.3<¢<1,BW ~ o, [1.85-1.19-].
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[ note ] Often the design of control systems assumes that the bandwidth can

be approximated by o, i.e. BW =0, .

» Resonance peak
In second-order systems the resonance peak is strongly connected to

the damping coefficient. In fact the following approximation is used:

M, =|G(jo)|,,_, :ﬁ for g<% (16)

1.1.4.1 Poles location and transient response

Consider a generic second order system pair of poles such as those provided
by the expression (10). Geometrically, in the s plane, each of the root equation

coefficients refers to the characteristics indicated in the figure below.
s}

oo

0/
s St beeees (--3 ------ - Refs}

Fig 5. Location of poles as function of the parameters {c,0,,®,,¢}

Changing the location of the two poles implies a change in system response.

The effect, on the system response to a unit step, given the variation of each

parameter {c,0,,0,,(} can be summarized as follows:

» The settling time is inversely proportional to c;
= The rise-time is inversely proportional to the vector pole module. More

specifically is approximately equal to T, ~ 1.8/, ;

= The overshoot is directly proportional to & where 6 =cos™ (£);
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* The peak-time is inversely proportional to o, ;

* The bandwidth is proportional to o, .

1.1.5 Reducing the system order

Often the system mathematical models are high-order differential equations.
However, in many situations, these models can be approximated by differential
equations of lower order with little information loss. The simplification is usually
carried out by neglecting system modes with low influence on the overall
transient response. The influence of a particular pole (or pair of complex poles)
on the response is mainly determined by two factors:

= The real part of the pole;

» Relative magnitude of the residue at the pole.

The pole real part determines the rate, by which, the transient term due to this
pole decays. The transient component decay is proportional to the magnitude of

the pole’s real part.

On the other hand, the relative magnitude of the residual, i.e. the coefficient
associated with the decreasing in time exponential, determines the percentage
of the total response due to this pole in particular. The relative magnitude of the
residue, associated to a particular pole, may be drastically reduced due to the

presence of a geometrically close zero.

Normally a pole, or pair of poles, is non-dominant if they are located far to the

left, on the splane, of those considered dominant (e.g. a decade or more).

[ note ] A decade refers to a ratio of frequencies equal to 10 (ten times higher
or lower). An alternative specification is to express the relationship in

octaves (two times higher or lower).

After the removal of one or more poles / zeros, the transfer function DC gain
should be rescaled so that both transfer functions (primary and reduced) exhibit

the same gain.

In order to illustrate what has been said let us consider the following system

transfer function:
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120
(s+0.5)(s+5)

G(s)=

It has two poles, one in s=-0.5 and the other in s=-5, and the DC gain is 48.
Since the transient response on the pole at -5 decays 10 times faster than the
one at -0.5, we can try to approximate the 2nd order transfer function to a first

order one with the following aspect.

24 _ ,
G(s)= (Note the gain scaling ot the zero frequency!)

s+0.5

In order to compare the transient behaviour of both transfer functions, the step

response is presented in the following figure.

%0 \ \ \ \ \
I I I
45 - — - — _ Lo Lol e A [
| | _F | | I
I =7 I I I
40 - - - — - Lo g [ a4 [
| 4 | | |
| o’ | | | |
3B -————-— = +-—-——- 4= H-——— =
(/4 | | | |
V4 I I I I
©30F-—-——— £ AN P O S SR _
he) (4 | | === F.T. Original
2 pY (AR ' | = F.T. Aproximada por Pdlo Dominante | _|
= ,I"V \T I I I
E /o | | | |
L0 --fF-r----~ Too - T B B O
i | | | | |
s f
] I I I I I
ol fd - L _________ _
] I [ i i i
! I I I I I
e v __r_____1_____d_____1_____
5 T | | | | |
! I I I I I
0’ 1 1 1 1 1
0 2 4 6 8 10 12
Tempols

Fig 6. Step response of both original and reduced system.

As one can see, the dynamic behaviour of both systems is quite similar having

a slight discrepancy only in the initial transient.
1.1.6 Noise Immunity vs. Bandwidth

The system bandwidth is directly proportional to the distance between the
dominant poles and the origin of the s-plane. In other words, the system
response time decreases and the output signal became more similar to the

input one.

In order to illustrate this statement, the next figure presents the step response of
three systems with different bandwidth. It's possible to verify that the response

speed of the system with the pole at -10 is higher than the one from the system
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with pole at -1. Moreover the response becomes to appear more “step shape

like” for systems with high magnitude poles.

I I I
I I I
1 e
PR | |
= | |
I I I
I I I
08LFL - L e 1 __ [, D
\ \ |
------ 0.1/(s+0.1) I
=== 0.5/(s+0.5) :
g — 1/(s+1
SoeHf---+F-----7---- 77”(”)7”””} 77777 -
= I I I
g' I I I
< I I I
R e EEE T 1----- a----- q-----A
I I I
I I I
I I I
i | | |
02 f----+---——+----- R 4---—- H-----
H I I I
I I I
H | | |
3 | | |
O 1 1 1
30 40 50 60
Tempol/s

Fig 7. Step response of three different first order systems

So it is intended that the system has the highest possible bandwidth
right?

Now imagine the response of two first order systems, one with a pole at 0.1 and
another with a pole at 1, to a step contaminated with white noise (random signal

with flat spectral density). Figure 8 present the simulation results for this set-up.

1L
08-f--—-- ‘L ——————
'/' | === 0.1/(s+0.1)
/ | — 1/(s*1)
S i : | |

206~ i Wy B e

i FAu | | | |

$o I | | |

E do | | | |

s | | | | |
04 --f-—-r-——--- T T - AT

§ I I | | |

H | | | | |

H | | | | |

¢ I I | | |
02—+~ [ R 4 H-

H | | | | |

i I I | | |

H | | | | |

! | | | | |

0 1 1 1 1 1
0 10 20 30 40 50 60

Tempols

Fig 8. Response of two first order systems to a step contaminated with white

noise (signal to noise ratio of approximately 6dB)
An analysis to the above figure reveals that a faster system has lower noise
immunity than the slower one. Thus, there is a clear compromise between

speed of response and noise immunity.

22 jpcoelho@ipb.pt



DIGITAL CONTROL

1.1.7 Systems linearization

All analysis and design techniques proposed in this curricular unit begin with the
assumption that the system is linear. Large part of the classic tools, for both
control systems analysis and synthesis, are based on the manipulation of linear
differential equations (in time or in the frequency domain). This is due to the
easier and faster mathematical manipulation of linear differential equations
when compared with the numerical treatment usually required by nonlinear
models. However, in reality, there are not linear systems. At least, a physical

system is always conditioned by the nonlinear phenomena of saturation.

However, often, a physical system operates only around a given operating point
and, within that dynamic range of operation, the system behaviour is
approximately linear. Since the objective of a control system is to keep the
process variables as close as possible to an equilibrium point, often a
compensator can be designed considering the system linear if the operating
zone is linearized. Both the linearized model and linear analysis method are

valid within the operating point.

[ note ] Once the control system is synthesized, it is advisable to carry out a

numerical simulation of the system with all its nonlinearities.

The linearization can be seen as the process of finding a linear model that
approximates a non-linear one. This can be done in various ways depending on
whether or not a mathematical model of the system is available. If so, the
linearization can be carried out by expanding the nonlinear terms in Taylor
series and neglecting the terms with order higher than unity. Alternatively this
can be done from the data obtained experimentally. From the data collected,
and given that the closed-loop controlled system remains near a given
operating point, by system identification procedures or sometimes even

graphically, one develops a linear model valid around that operating point [6].
1.1.8 Feedback system

An open-loop control system only has a proper behaviour if:

» The system model is accurate;
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=  There are no external disturbances;

= |If the system parameters vary in a deterministic manner.

Since these conditions rarely occur, most systems rely on control by feedback.

A simple feedback system can be modelled by the following block diagram:

D(s)

— P(s) T

+
R{s) E(s) UG -, _ Yis)
—:(:}—' K(s) G(s) +@

L@;

N(s)

&

H(s)

Fig 9. Block diagram of a feedback control system

Where R(s) refers to the reference signal that the system should follow E(s)
the error signal, U(s) is the controller output signal, D(s) is the disturbance,
Y(s) is the output signal and N(s) refers to measurement noise® introduced by
the sensors. The transfer functions K(s), G(s), H(s) and P(s) refers to the

controller, the plant, the sensor and the disturbance. In some circumstances,

there is a pre-filter located after the signal R(s) whose purpose is to eliminate

the effect of some closed-loop zeros.

The design of some of the Figure 9 blocks (in particular K(s)) should make the

overall system behaviour to act as imposed by the project constraints. More
specifically the system must be able to:
= Follow the reference signal with the least possible error.

= Reject disturbances and error signals.

Just before moving on, a recap of some of the nomenclature, associated with
the block diagrams of control systems, is in order. Taking into consideration the
diagram shown in Figure 9, we present the following definitions:

=  K(s)G(s) - Direct transfer function

= K(5)G(s)H(s) - Open-loop transfer function

3 Usually of high-frequency.
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G(9)K(S)
1+ G(S)K(s)H(s)

= Y(5)/R(s)=

- Closed-loop transfer function

[ note ] Although it seems that the open-loop transfer function should be
K(s)G(s) in fact, and considering H(s) as the sensing element, the
way you measure the system output is considered inherent to the
system itself. The sensor dynamics cannot be separated from the

system dynamics itself.

[ note] Still regarding the stability margins, consider the closed-loop transfer
function. One observes that, for a given frequency, the magnitude of
the transfer function is infinite if the open loop gain is equal to -1. This
corresponds, in terms of Bode plots, to a 0dB magnitude and a —180°
phase. It is from this relation that one can infer on the closed-loop

stability by using open-loop information.

1.1.8.1 Sensitivity of closed-loop system

As already said, a closed-loop system has greater immunity to variations in the
system dynamics so it has an increased ability to cope with variations in system
parameters. In order to validate what has been said let us consider a control

system with unity feedback as shown in the figure below.

R(s) Y(s)
+Cf—' Kis) [ 7] G(s) -

Fig 10. Closed-loop system with unity feedback.

The closed-loop transfer function has the following expression:

YO) 15 _KEGO)

R(s) 1+ K(s)G(s) (17)

Now we evaluate the sensitivity of the closed-loop transfer function to some
system variations. In order to do this one computes the sensibility of the closed-

loop regarding the system transfer function, i.e. 9T (s)/0G(s)

oT(s) _ K()(1+K($)G(s)) - K*(s)G(s) _ K(s)
0G(s) (1+ K(5)G(s)) (1+ K(5)G(s))’

(18)
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multiplying and dividing by G(s) become:

aT(s) _ K(s)G(s) CTo(s 1
G GE)(1+KEGE)) GO+ KE)G) (19)
This leads to the closed-loop transfer function relative variation:
oT 1 oG
(s) _ _0G(s) 20)

T(s) (1+K(s)G(s)) G(s)
It follows that the closed loop transfer function is insensitive to variations in the
process transfer function for the frequencies to which the open-loop transfer

function is high. That is, if

K(s)G(s)|,_, —> 0 (21)
then

aT(s)

TO) L. —0 (22)

Thus, for the design of a robust controller (insensitive system dynamics

variations), it is necessary to find K(s) so that the magnitude of the transfer

function of open loop, is high for the frequencies at which there are significant

variations in the transfer function of the system.

Another particularity of a closed-loop control system has to do with his ability to
overcome the effect of disturbances on the controlled variable. In fact, analyzing

the effect of D(s) on the system output of the system of figure 9 (considering
unity feedback and both R(s)=0 and N(s)=0) one gets,

YO g PO

D(s) 1+G(s)K(s) (23)

This expression refers to the so-called sensitivity function. One concludes that,
in order to reduce the influence of disturbances, the sensitivity function must
provide low values for the frequencies components present in the disturbance.

The same is to say that, considering P(s) constant and equal to one, the open-

loop transfer function must have a gain as high as possible in the disturbance

frequency range.

The same reasoning can be carried out by considering now the measurement
error. Still based on the image of Figure 9, considering unity feedback and the

signals R(s) and D(s) equal to zero, the influence of measurement error in the
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output signal is modelled by the following transfer function:

Y(s) _ G(s)K(s)
N(s)  1+G(s)K(S)

(24)

Therefore, to reduce the influence of measurement error, the closed-loop
transfer function must provide low values for the frequencies range present in

the noise.

Finally note that, to minimize the set-point tracking error, the closed-loop
transfer function should be constant, and close to unity, for the range of
frequencies present in the reference signal [8]. Thus, taking into account the
system closed-loop sensitivity to both disturbance and noise, it appears that
there is compatibility between the set-point tracking criterion and the
disturbance rejection. However there is incompatibility between this objective

and the measurement error reduction.
1.1.8.2 Steady-state error

In many control systems design, one of the imposed criteria has to do with the
system steady-state response. For a closed loop stable system the level of the

system output signal, y(t), tends to be, in steady state, as close as possible to
the magnitude of the command signal r(t). The difference between these two
values is called steady state error and can be computed by:

e, =lime(t) = lim[r(t) - y()] (25)
or, alternatively, in the Laplace domain,

e, =limsE(s) = ims[R(s)-Y (5)] (26)
1.1.8.2.1 System with unity feedback

In the case of a unity feedback system, like that presented in figure 10, the

steady state error can be determined from the open loop transfer function as,
E(S)=R(s)=Y(S)=R(s) - K(s)G(S)E(s) = R(5) =Gy (S)E(S) (27)
Solving in order to E(s) become,

1

Syl

(s) (28)

Applying the final-value theorem,
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SR(s)

e.=lim—————
ss s—0 1+GOL(S) (29)

For a polynomial excitation signal of degree k :

R(S) = —, vk e N! (30)

Sk+1 2
The steady state error expression takes the following aspect:

1
(14 G (3))s"

By admitting that the system is type | and has a transfer function with form;

e. =lim
s s—0

(31)

N(s)

G ()=
=T (32)
One concludes, by replacing (31) in (30), that:
|
e, =lim 20 (33)

0 (s'D(s)+ N(s))s*

From an analysis of the previous expression one can formulate the following
conclusions:

» |f I >k the steady-state error is zero.

» |f I <k the steady-state error is infinite.

= fl=Kk

) 1 ) 1
e. =lim =lim |
-0 (1+Gg, (5))s (34)

S T 550 (1+ [\|(3) jsl
s D(s)

Systems of type 0, | and Il are the most common as well as order O, | and I

excitation signals (steps, ramps and parabolas). The following table

summarizes the e, values for all combinations between these three pairs of

cases.
Order 0 Order 1 Order 2
Type 0 1/1+Kp) 0 0
Type | 0 I/K, %
Type I 0 0 /K,

Tabelal. Steady-state errors as function of system type and signal order (for unity
feedback)
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In the above table, the parameters K, ,K, and K, are designated by position,

velocity and acceleration constants respectively. These constants are computed

by the following relationships (derived from equation (32)):

Ko =1imGq, (5), K, =1limsGq, (s) and K, =1lims’Gy, (5)

[ note ] Often, the system steady state error for a step, ramp or parabola input

is called position, velocity and acceleration error respectively.

1.1.8.2.2 Non-unity feedback system

For the generic closed-loop system structure with transfer function in the

feedback loop equals to H(s) (like the one shown in Figure 9), the steady state

error can be determined from the following expression,

bl _prar_ K(6)G(s) Ry
E(s)=R(s)-Y(S)=R(s) T K(S)GS)H () R(s)=R(s)-G, (S)R(S)  (35)
The same is to say,
E(s)=(1-Gc (9))R(s) (36)

Applying the final-value theorem, and for an k - order excitation signal, the

steady state error expression takes the following aspect:

e, = lim e @7)
1.1.9 First-order closed-loop systems
Consider a first order, causal and stable, system of the form:

KG(s) = —— (38)

S+a

As one has seen earlier, the system bandwidth is equal to the pole magnitude.

Additionally, and for x/a>1, the open-loop gain crossover frequency is Oy =K.

In closed-loop, with unity feedback, the transfer function becomes:
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kG(s) =« 39
1+kG(s) S+a+x (39)

and changing the parameterization one obtains,

KG(jo) _( K j 1
1+xG(jo) \k+a) Jo (40)
K+a

From the previous equation one can conclude that, since K/(K-I-a) is less than

unity, the magnitude of frequency response never crosses the line of 0dB. So
there are not resonance peaks for first-order systems.

[ proof ] that the open-loop gain crossover frequency is o, =« .

Using the Bode plots for,

KG(jm)z(gj-m

One gets the following asymptotic outline:

|I‘:(j'{jf'£|-)| f dB

20log (K/a)

-20db/dec

=]

I

I

a ) o frad/s

Since between a and o, there are logm(mgc/a) decades, the attenuation over

the frequency a is therefore —20-log,, (. /a). It is known that for o=, the

magnitude is 0dB hence,
20-log,, (x/a)—20-log,, (mgc/a) =0

which implies that o, =1«

Additionally, and relatively to the open-loop system, there is an increase in
bandwidth. For high gain values, the bandwidth of the closed loop is

approximately equal to the gain crossover frequency. This statement is
validated by the following figure.
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15 T T T T T |

o

radfs

100 200 300 400 500 600 700 800 900 1000
Ganho Relativo K/a

Erro Relativo: r = 100*e/BW

S0 T T T T T T | T T

: ] : i : i =01

40 L — 1

— 10

20 i - ; ; : : : i

= : : | i : g i

a ; f é ; : i
10 j

100 200 300 400 500 600 700 800 900 1000
Ganho Relativo K/a

Fig 11. Absolute and relative error of approximation BW, ~ @
It thus appears that the approach BW, ~ o, is valid, within a tolerance of + 1%,

for DC open loop gains higher than 40dB. That is, if the gain is 100 times the
pole module, the relationship in question remains within the defined limit. Note,
however, that for lower values, the error of this approach can be quite high. For
the simulated cases a relative error around 45% was obtained for a relative gain

of 2,i.e. k/a=2.

1.1.10 Closed-loop second order systems

Consider the 2nd order system (causal and stable) in standard form:

2

K®

G(s) = n
KGE) s +2L0,S + o) (41)

The transfer function under closed-loop unity feedback is:

kG(s) KO, B KO,
1+kG(s) §*+20m,S+0; +Ko, o2 +2Cwn5+(‘ﬂn /1+K)2 (42)
which can be rewritten as
KG(S) _ K('Oﬁ 1<C| ('Oﬁd (43)

1+kG(s) S +20m 5+, 8 +20,0,,5+0,,
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where
(’Oncl = (’On K+1 (44)
Ca = - (45)
Vr+1
K
—__ 46
KcI K+1 ( )

= From expression (43) it follows that the system closed-loop bandwidth is
higher than the open-loop bandwidth (BW, = o, ).

= By (44) one concludes that the closed-loop damping factor is lower than
the open-loop damping one. So the overshoot will be higher.

= And from (45) the closed loop gain is less than the open-loop gain and

less than one.

[ note ]
For high values of «, the gain crossover frequency (o, ) is approximately equal

to the undamped natural frequency of the closed loop, i.e. o, ~o,. More

specifically the approach is valid, with an error below 10%, for values of «>10

and (<1 as illustrated in the following figure.

: I =
> | = zeta=0.1 ||
[ | zeta=0.5 ||
| === zeta=09 |

Erro Relativo/%

10 20 30 40 50 60 T0 80 90 - 100
Ganho K
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[ note ]
As noted earlier, there is a close relationship between phase margin and the
closed loop damping ratio. An approximate relationship is given by the following

formula [14]:
P, ~2-sin" () (1)
Another approach for phase margins less than 70 °, consists of [6]

P (in degrees)
~ -0 2
Ccl 100 ( )

The following figure illustrates the quality of each approximation.

-1
<

T
—— Pm=2.sin'1fzetad] U
— Pm=100.(zeta )

=[0.3.0.7
wWoa cén[ @ :
S 2 o o

]
==

Emo Médio/ @ zeta

I i I i | | i I |
10 20 30 40 50 &0 70 80 80 100
Ganho K

o

—_— =2 sin !
351 Pm=2sin (zelaclJ
— F'm=100.(zeta=|}

Erro Meédio®s € K=[1,100]

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.85 0.7
ZetacI

It appears that for gain values below 3, the mean relative error increases
exponentially. Moreover, it is observed that the approach by (1) only produces
satisfactory results for gains between 3 and 10. From this point forward it is

advisable to use the relation (2).

1.1.11 Open-loop vs. closed-loop response

The classical design and analysis techniques use the open-loop system
response and try to predict his closed loop behaviour. Even if only a rude
approximation of the closed-loop behaviour can be obtained from the open-loop
transfer function, the following rules can be taken into account as an aid in

control systems design.
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In this framework, consider a system with direct transfer function G,(s). By
evaluating G,(s) along the axis jo one obtain the direct frequency response
G, (Jo). In closed loop, and taking into consideration the feedback transfer

function H(s), the frequency response will be:

- Gy (jo) Gy (jo)
G _ D _ D
U G (iR (o) 1+ G (jo) #7)
For values of |G, (jo)|>1,
G (jo) = o] g (48)

Go(jo)H(jo) H(jo) [H(jo)

It appears then that for high magnitude values of the open loop transfer
function, the closed loop frequency response has its magnitude approximately
equal to the inverse feedback transfer function and phase with opposite sign. In

the particular case of unity feedback (H(jw)=1) the closed loop frequency

response magnitude is approximately constant and equal to 0dB. The phase is

also constant and equal to 0 °.

On the other hand, for values |G, (jo)| <1,

GeL(jo) » Gy (jo) (49)
In this case the closed loop frequency response is approximately equal to the

direct frequency response (both magnitude and phase).

In the vicinity of the gain crossover frequency, (for |GOL(joa)| ~1) the closed loop

frequency response magnitude strongly depends on the phase margin. Due to
this fact, the relationship between the gain crossover frequency and closed-loop
bandwidth mismatches. This discrepancy increases when the closed-loop zeta
decreases. Thus, as a rule-of-thumb, one can say that the bandwidth of the
closed loop is usually within one to two times the gain crossover frequency,

0, <BW, <20, (50)

gc —

An useful heuristic for control systems design is to consider the bandwidth
equal to the gain crossover frequency in case of a phase margin of 90° or a
bandwidth twice the gain crossover frequency if the system has an open loop

phase margin of 45° [6]. That is,
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BW = o

o OF BW,, =2

9| pm=45° (51)

1.2 Control Systems Design

In this section some classical controller design techniques are reviewed. Please
note that we are concerned in analog controller design for linear, time-invariant,
causal and minimum phase systems. The techniques addressed are based into
two distinct graphical approaches: the root locus and the Bode plots. Both
techniques have substantial differences when compared. Besides the fact that
the former is a time-domain analysis and design technique and the later a
frequency domain approach, there are one major difference among them: the
root-locus design procedure requires the knowledge of the system pole-zero
location (i.e. a satisfactory process model must be known). On the other hand a
Bode plot can be obtained experimentally and then be used for analysis and

synthesis.

[ note ] Please note once again that the controller classical design techniques
are based on the open-loop transfer function in order to predict the

closed-loop system response.

1.2.1 The root-locus

The root locus shows the location of the closed-loop poles as a function of a
given transfer function parameter variation (usually, but not exclusively, the
gain). Besides the possibility of determining the stability and relative stability in

closed loop, the root locus is also a common controller design tool [4] [10].
1.2.2 Bode diagrams

In control systems, Bode plots can be used for various purposes including the
determination the values for of some figures-of-merit and for controller design.
In the control system design framework there are two types of Bode diagrams:
open-loop and closed-loop. Open-loop diagrams can be use to:

= Determine relative stability margins;

= Determine the system type (noting the slope of the frequency response);

= Controller design: Due to the diagrams addictive nature, the association
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effect of a given compensator to the system can be easily determined.

On the other hand, closed-loop diagrams can be used to:
» Determine the bandwidth (a measure of system response and noise
immunity);
= To determine the relative stability (the resonance peak in the Bode plot of

closed loop is a reliable indicator of relative stability).
1.2.3 Controllers Types

At present time, there are a myriad of different type of controllers. Some of them
are used in the industry and in our everyday life machines. Most of them are still
in the theoretical domain and live in books and conference papers. Due to the
time constraint imposed by the present curricular unit, only a brief treatment on
a reduced number of controller strategies will be taken. Two classical control

strategies, the PID and the Lead/Lag controller, will be addressed.

PID stands for proportional-integral-derivative and are the most common
controller type in the process industry. With three degrees of freedom, this
controller is able to meet most of the closed loop specifications (e.g., gain and
phase margins or steady-state error). The PID has the following standard

transfer function:

K(s)=K; + de+%
where K,, K, and K; are the proportional, derivative and integral coefficients

respectively. As one can see, the PID transfer function contributes with two

zeros and a pole at the origin.

On the other hand, a lead/lag controller only has one zero and one pole. The
canonical transfer function of such controller has the following structure:

aTs+1

K(s)=«
) Ts+1

where the controller is of lag type if [a| >1 and of lead type if |a| <1.

Besides these two controller types, an alternative algebraic method is also

presented. This method, denoted by unity feedback controller (UFC), consists
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on an open-loop transfer function pole placement strategy. In order to use this

method one must know where to put the closed-loop transfer function poles.
1.2.4 Controller design by pole-placement

Once again, the main control system objective is to reshape the natural system
behaviour in order to obtain a new one, developed around the original, capable
of meeting the desired design constraints. As can be imagined, there are many
ways to do this task. The usual and basic strategy involves information
feedback.

So, consider the following unity feedback system:

Ris), . Y(s)
+<:f "I K(s) G(s) "

Fig 12. Closed-loop control system with unity feedback.

Taking into consideration the system transfer function G(s)=N(s)/D(s) and the
compensator transfer function K(s)=B(s)/A(s), the aim of the control system is

to make the dynamic behaviour of the closed-loop transfer function close to the

desired one. Let G, (s) = P(s)/Q(s) be the desired closed-loop transfer function.

Since the plant transfer function is considered fixed (otherwise any change may
involve the physical alteration of the plant) the closed-loop dynamic is tuned by

selecting a proper controller transfer function.

The closed loop transfer function of the system shown in figure 12 is:

G(sK(s) _ B(S)N(S)

Ca(8)= 1+G(s)K(s) A(S)D(s)+B(s)N(s)

and, since we want the system to display the behaviour dictated by the transfer
function G, (s), then the following relationship must be verified:

B(S)N(s) _P®
A(S)D(s)+B(s)N(s)  Q(s)

which leads to the following pair of project equations:
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N(s)A(s) = P(s) (52)
and
A(s)D(s) +B(s)N(s) = Q(s) (53)

Please note that the closed-loop transfer function numerator, N(s)B(s) cannot
be changed. This is because N(s) is intrinsic to the plant and B(s) depends on

equation {52} solution. Thus, using this project strategy, only the pole’s position
can be controlled. Thus, since the location of zeros also contributes to the
system dynamic behaviour (e.g. the error in steady state) in general one cannot

validate all the constraints imposed initially.

Since, as already mentioned before, the original system dynamics is considered

unchangeable, equation {52} is of the type,
a-X+b-Y=c (54)

known, in number theory, as the Diophantine equation. Thus, the objective of

this technique is then proposed for solving a polynomial equation.

Note that often the Diophantine equation solution is not unique. Moreover,
sometimes, the final design results in improper and physically impossible
controller. However, it is possible to guarantee the existence of a proper

controller if the following condition is verified:

If the system is of order n, strictly proper and irreducible, then there exists a

controller of order n—1 for a order 2n—1 characteristic polynomial Q(s).

The general solution of Diophantine equation is presented by below taking into

consideration the following transfer function expressions for both process and

controller,
Ns"+N_s"'+---+N
G S — n n-1 0 55
®) D,s"+D, s"" +---+D, (55)
B s"'+B ,s" +:--+B
K(S) — _—n-l — n-2 — 0 (56)
A ST +A ST+ A
and assuming a closed-loop characteristic polynomial of the form:
Q(s)=R,, s> +--+Rs+R, (57)

Multiplying the appropriate terms and equating the coefficients of identical

38 jpcoelho@ipb.pt




DIGITAL CONTROL

powers leads to the following set of matrix equations,

S(N,D)-X =R (58)
where
'D, N, 0 0 0 0]
Dl Nl DO NO :
1 D N, 0 0
S(N,D)=/D, N, ¢ i .- D, N, (59)
0 0 D, N, D, N,
0 0 0 0 - D, N,]|

is called the Sylvester matrix and has order 2n. On the other hand X and R

are vectors with the following format:
:
X:[Ao B, A B - A, Bn—l] (60)
T
R:[Ro Rl Rz R3 R2n—2 R2n—1] (61)

Finally, the controller transfer function coefficients are obtained by solving the

matrix equation,

X =S(N,D)"'R (62)

1.2.5 Tuning PID Controllers

In this section some control PID tuning techniques are presented. The first is an
empirical method based on the free or forced system response. In addition, an
analytical tuning method similar to the pole-placement, is reviewed in section
§1.2.4. Frequency response based methods are also possible and will be

addressed in some proposed exercises.
1.2.5.1 Ziegler and Nichols method

One method for tuning PID controller uses a set of empirical rules proposed in
1942 by Ziegler and Nichols. From the open-loop system step response, or
evaluating the system closed-loop response at the edge of instability, was
possible to derive a set of heuristics for easy tuning of a three degrees-of-
freedom controller. However it should be noted that, although simple, a
controller tuned by this method cannot achieve system closed-loop behaviour

able to meet specific requirements (e.g. overshooting, settling time and so on).
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However, its main advantage lays in the fact that a system mathematical model
it is not necessary for the design process (as opposed to most techniques).
Taking into consideration Ziegler and Nichols work one presents two different

tuning controllers rules for stable systems.
1.2.5.1.1 Reaction Curve Method

The first technique follows from the open-loop system step response. In case
the step response can be approximated to a first order system, with pure delay
in the time, we get the following relevant variables:

= Slope of the tangent at the inflection point of the response;

» Interception of this tangent with the axis of time.

As can be seen in figure 13, the slope of the tangent is obtained from m=K/t
and the time delay t;, from the point where the line crosses the time axis.

K

Fig 13. Reaction-curve tuning procedure.

Using this values, and based on the table below, the controller parameters are

tuned.

Kp Ki Kd
= 1/(m-t,)
Pl | 0.9/(m-ty) 0.3K, /t,
PID | 1.2/(m-t,) Ko/(2:ty) 0.5-K,-t,

Tabela 2. Ziegler-Nichols tuning rules for the reaction curve method.

It should be noted that the criteria defined in the tuning table normally lead to a
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Ya decay. The same is to say that the closed-loop transient response magnitude
decays to 25% after a period of oscillation. This performance criterion implies a
closed-loop zeta approximately equal to 0.22 which can be considered a good

compromise between speed of response and adequate stability margins.

[ note ]

The poles of a canonical second order system are located at s=-Co, + jo,.

Thus the system impulse response has the following appearance:
2
h(t) = 20 e - sin(oo,t)
Wy
As one can see the transient component decays exponentially. For the

sinusoidal component attenuation to be 25% after a period it is necessary that

o £2n

—Co,— - 2
i % e 20256 % =025=e V" =025

t=T

solving in order to zeta one gets the solution £~ 0.2155.

1.2.5.1.2 Sensitivity Limit Method

In this second method, the parameters adjustment criterion is based on the
system evaluation at the stability limit. More specifically, for the particular case

of an asymptotically stable system in the region 0<k <K_, the following tuning

rules are specified:

Kp Ki Kd
P 0.5-Kg
Pl 0.45-K, 0.6K, o /1
PID | 0.6-K, Koo /7 Kom/(4- o )

Tabela 3. Ziegler-Nichols PID tuning rules

Where K. refers to the critical gain and o, the oscillation frequency (imaginary
part of the closed-loop poles for k=K. ). If a model is available, the values for
K. and o, can be algebraically determined by the Routh stability criterion.

Other approaches can be used. For example the root-locus or the Bode plots

are two tools that enable us to find both the critical gain and critical frequency.

In the root-locus one searches for the gain that places the closed-loop poles
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over the imaginary axis. This value refers to the critical gains. The pole vector

magnitude at this point defines the oscillation frequency.

[ note ] Routh stability criterion
The Routh stability criterion is a method for finding the existence of poles in the
right half-plane and can be applied to systems such as:

m m-1
b,s"+b, ,s" +---+Db,

G(S): a n n-1
S +a S +---+8,

The stability is analyzed from the characteristic equation:
as"+a _s"'+--+a,=0

The criterion is applied by constructing a table or matrix of the form:

n
S a'n an—2 an—4
n-1
S a'n—l an—3 an—S
Q, Q, Oy
B B B
where o, = A&y 385 ol = A&y — 385 s
an—l an 1
andp, = o8, — &, 0y B, = 08, s — 8, 04 ’
al al

All the characteristic equation roots have negative values if, and only if, the

Routh’s first column elements have all the same sign. Otherwise, the number of

roots with positive real parts is equals to the number of sign changes.

Obs1: A row of zeros associated to the line s indicates that the polynomial has
a pair of roots that satisfy the auxiliary equation A-s*>+B =0 where A

and B are the first and second elements of the row s-.
Obs2: If any of the elements of the first column is zero (except the last) the zero
is replaced by an infinitesimal amount ¢. This amount is used for

computing subsequent factors.

On the other hand, using the Bode diagrams, one can find the critical gain value
as the one that makes the system gain margin equal to zero. The critical

frequency is the crossover phase frequency.
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1.2.5.2 Bode diagrams controller design

An alternative design way of PID controllers is based on the open loop system
frequency response outline. Due to the addictive behaviour of Bode plots, and
knowing both the open-loop frequency response and desired close-loop
frequency response, it is often possible to find out, in an expeditious way, the

controller coefficients.

For Bode plot controller design, an alternative controller transfer function

parameterization is used. The transfer function has now the following structure:

K (SHJ{SHJ
K(s):dez+Kps+Ki: o ®, (63)
S S
where
K. K
K =—ip %
o o (64)
and
K.
K — 1
d o, (65)
[ proof ]
K.s>+K s+K. s’+K /K, s+K. /K
K(S)Z d p |:Kd p/ d |/ d
S S

The roots of the numerator are:

1
S=— (Kp+4/K§—4Kin):—col

d
1 2
S=— (K, —JK; 4K K, )=,
d

so K(s) can be rewritten as follows:

K(s)=K, (s+o)(s+w,)

(S + 1)[8 + lj
K(S) = 0,0, K, /A D2

S

, l.e.

The product o0, is:

o | T =) -

d d
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TaKkI\e 4K, :

hence,
(1](1]
K(s)= K, 2 \®
S

It is easy to see that the constant K and K, can be taken from the values of

(K0 a0, = s

the variables o,,®, and K, as follows:

0, + 0,

K, = K, and K, =K
0, 0,

1.2.5.3 Analytical design strategy

By knowing the following performance criteria:
= Steady state error;
= Bandwidth;
* Phase margin.

an analytical PID controller design technique can be derived.

The phase margin can be derived, for example, by knowing the maximum
allowable overshoot and the bandwidth can be indirectly inferred by the settling

time.

To illustrate the procedure consider the open loop transfer function of a system

controlled by a PID (for a unity feedback loop):
K.
GOL(S):(Kp+KdS+?IjG(S) (66)

If case of a type p system, the compensated system is of type p+1 (due to the

additional pole at the origin added by the controller). From section § 1.1.8.2 one
already knows that the error constant is equal to the steady-state error inverse

and is given by:

K

p+1

. oa Kps+Kys'+K, , 1
=11n;)13p G(S)Illﬂ(‘)lSpKiG(S)I— (67)
s> S 5= s

Thus, for a given steady state error, one of the controller parameter is

immediately obtained: the integral constant K,
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It has been said earlier that the closed-loop natural frequency corresponds to
the open-loop gain crossover frequency. It is also known that the phase margin
can be obtained from the closed loop damping coefficient. Thus, for the

frequency o=, the compensator must have unity gain and phase equal to

gc’

0, =P, —180°.

W=,

Resulting from these facts, and since the integral constant is known, the

following equality can be written [14]:

. K. . 00,
K, + jo, Ky +—— |G(jo,)=1e""" (68)
J(’Ogc
i.e.,
. e K
K, + jo K, = S S (69)
G(Jog) oy

which leads to that

jew:mgc jem:mgc
Kp:Re{le_ + ] Ki}and Kdzlm{le_ + ] K‘} ! (70)

1.2.6 Lead/Lag controller design strategies

One of the simplest forms of a compensator is just a filter with one pole and one
zero. In this context two basic controller types will be reviewed: the phase lead

and the phase lag controller.

A lead controller, as its name implies, add positive phase to the system. On the
other hand a lag controller add negative phase to the system. The controller
type choice is application specific. However, usually, a phase advance
controller is used in situations where an increase in bandwidth and phase
margin is needed. On the other hand, a lag controller has an opposite effect:

tends to decrease the bandwidth but increasing the steady state performance.
1.2.6.1 Phase-lead controllers

A phase lead controller has the following effects on the control system
behaviour:

» Increase of relative stability by increasing the phase margin;
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» Increasing the bandwidth;

» Increase the steady-state error;

» |ncreased time response;

» Reduction of overshoot (higher zeta)

*= Poor noise immunity.
1.2.6.1.1 Design strategy: Bode diagrams

Consider the transfer function of a lead compensator parameterized as follows:

aTs+1
Ts+1

K(s)=x ,a>1 (71)

for s= jo one obtain,

joaT +1

K i = =
(Jo)=x joT +1

[K(jo)| ZK(jo)
The controller provides a phase advance that can be computed by:
ZK(jo)=® =tan" (aTo)—tan™ (To) (72)

The frequency, at which the phase advance is maximal, can be calculated by

solving the following equation:

D, = dd—o)(tan1 (aTw)—tan™ (Ta))) =0

leading to
da . o _ar T B
dw(tan (aTw)—tan" (Tw)) = T (@Ter 1+(To) =0

For the above equation to be zero it is necessary that
aT [ 1+(To)’ |-T-[1+(aTw)’ | =0
so,

aT+aT’w’ -T-a'T'0’=0=>
al’e’(1-a)=T(l-a)=

and thus
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1
TVa (79)
Thus the frequency at which the phase advance is maximal, occurs at:
W= —1 =0
TVa
the phase advance, at o, , is maximal and its value is equal to:
_ -1 -1 1
D, = tan (Ja)—tan [ﬁ} (74)
leading to
. a-1
Sln(q)MAx ) = m

and ultimately, to the value of constant a regarding the maximum phase
advance:

A 14 sin(@y,5y )

1 —sin(D,,y ) (75)

[ proof ]

Consider the following equality:

CDMAX =tan_1 (\/a)—tan_l (%j:@—(p:k

Geometrically, the expression has the following aspect:

-

Note: tan(t) =

> |<

Form the vector calculus theory one knows that the inner product between two

vectors d=<a,,a,,---,a, > and b =<b,b,,---b > is given by:

d-b=ab +ab, +--+ah = |§|-‘5‘~cos(8)

where ¢ refers to the angle formed by the two vectors and |a|=/a’ +a; +---a;
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and ‘5‘:\/bf+b§+---b§ refers to the absolute value of the vectors a and b

respectively.

So it is easy to verify that

<\E,1>.<1,ﬁ>_ Ja++/a _2\/5
‘<\/§,1>H<1,\/5>‘ Ji+a-l+a l+a

By the fundamental theorem of trigonometry,

cos(L) =+/1—sin*(X) = &

l1+a

S0,
sin(\)= [l-—2___ 1—2a+?2: (a—1)2=a_1
(1+a) (1+a) (1+a)" a+l

1+sin()) o oa- 14 sin(D,y,y )
1 —sin(A) *=Puax 1 —sin(®,,, )

cos(A) =

a-l=(a+1)-sin(A)=>a=

[ alternative proof |
Taking into consideration that

tan™' (l) :g—tan’1 (a) one get the following equality:
a

D, =tan”' (\/5) —tan”' (%

(2) e ) (48

tan[(%)(qbw\x +§D —/a which implies that a = tan ((%)(CDMAX +§D . Thus,

] , @, =tan”’ (\/g)—g+tan_l (\/E)

2
o [5in(05 (P +0.5m)) ) _( (sin(0.5 - Dy ) +0S(0:5- D)) i
- c0s(0.5- (D +0.57)) | (c08(0.5- @, ) —sin(0.5- @, )
e sin’(0.5- @, ) +cos’(0.5- D, ) +2-5in(0.5- D, )-c0s(0.5- D, )
c0s’(0.5-®,,,, ) —2-sin(0.5-D,,,, ) - c08(0.5-D,,,, ) +sin*(0.5- D, )
o[ 152:5in(0.5- @y )-00S(0.5- Dy ) Lsin( Dy )
1-2-5in(0.5- @y )-08(0.5- Dy ) ) 1—sin( Dy )

The additional gain contribution, from the transient component, at frequency

®=w, is:
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jogaT +1
Jo,T +1

i T+1
@MdB:zomgm(M

Jo, T +1
jva+1
ja* +1

M =

JdB
} :2010g10(«/1+a)—2010g10( /”TaJ
dB

I+a
M =10log,, (1+a)—1010g10(7j=1010g10(a) (76)

Mg =20log,, (

in other words

Using the above derived equations a design procedure is systematized by the

following seven steps [14].

[ note ] With this algorithm is not possible to specify the gain crossover

frequency.

Algorithm:

Step 1 of 7: Calculate the gain x so the error constant has the desired
value

Step 2 of 7: Draw the Bode plot of kG(jw) and find the phase margin.

Step 3 of 7: Compute the amount of phase lead necessary ® and add to
it five or ten degrees (security margin).
1+sin(D)

Step 4 of 7: Find the value of a from the expression a = -
1 —sin(®D)

[ note ] The practical limit to a is 10 which is equivalent to a maximum phase

increase of 55°.

Step 5 of 7: Search for the frequency at which the gain is

|[xG(jow)|,, =—10-log,,(a). The value of this frequency will be

the gain crossover frequency.

[ note ] The phase advance, for each zero, should not be higher than 45 ° so
that its position does not significantly interfere with the frequency

response magnitude by changing the gain crossover frequency o, .
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[ note ] Relationship between attenuation and phase advance.
For a phase advance between 0° and 55° the ratio between the signal
amplification (due to the controller) and the phase advance has, in dB, the

following aspect

12 I I I I I
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| | | | |
| | | | |
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If we compare the result profile with a line through the origin it can be said that,

for an error lower than 0.85dB (0.25dB between 0° and 45°), the attenuation to
consider in the design algorithm is approximately 1/6 of the phase lead (in

degrees) needed.

1

oz

Step 7 of 7: Draw the Bode plots for K(jo)G(jw) to confirm the design

Step 6 of 7: Calculate T from T =

constraints. One should also simulate the response of the

closed-loop system
1.2.6.1.2 Design Strategy: By analytic manipulation

Just like was done for the PID controller, another lead controller tuning strategy

can be obtained analytically. Consider a system, with transfer function G(s), in

series with a phase lead controller with transfer function:

aTs+1
Ts+1

K(s)=x

Consider also that the system must have, in closed loop, a steady-state error
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less than or equal to 6 and a bandwidth .. In addition, the phase margin must

be equal to P, degrees.

From the first specification, and depending on the order of the polynomial type
input signal (step, ramp or parabola), the gain « is obtained from the final-value

theorem. For example if the input is a step and the system is type 0 then

where
Ko = lin(} K(5)G(s) = K-lirI(}G(S)

SO
8-limG(s)

Parameters a and T are obtained from the other performance criteria.
Considering that the bandwidth is approximately equal to the gain crossover

frequency then, at frequency o=ow, =o,, the system should exhibit a phase

equal to ¢ =Pm-180. Therefore,
K(jo)G(jo),,., =e"

Considering that, at the frequency o=, the system magnitude and phase are

IG(jo)|=M and £G(jw)=6 then

K(jm)G(jco)|@m:wc = K(jco)|@m:mc M.el =gl
i.e.,

K(](D)| :Lej@*e)

@w=0, M

Because,

K(jo) = J2T2t1

jTo+1
then
. JaT(,l) +1 1 j(¢,9)
K(jo —Kk——%t—=—28
(} )|@w=wc To,+1 M
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or
jaT(OC +1 _ 1 ej(¢_9) _ 1
To,+1 «x-M K-M
Solving the above equation one gets:

A (x-M)cos(Pm-6)+1 andT:K-M-i?cos(Pm—G)
k-M [K'M +cos(Pm—9)J o, sin(Pm-0)

pi(Pm-180-0)

or,

AT = (k-M)cos(Pm—6)+1 and T - k- M +cos(Pm-6)
K-M -, sin(Pm—0) , sin(Pm—0) (77)

[ proof ]

jaTOJC+1_ 1 ej(Pm—lSO—e)

T = multiplying the left term by the conjugate and
(,Oc-i- K-

applying Euler's identity to the right term one obtain:

e
(ja m(: )()2 JTlooc+1) _ IM (cos(Pm—180—6)+ jsin(Pm—180—-6))
o, ) + LSS

2 .
1+a(Tozfr) +)21chc(a—1): IM (cos(Pm—180-6)+ jsin(Pm—180-6))
®,) + LSS

Separating the real from the imaginary part we have that:

1+a(To,)
] 20%) _ cos(Pm—180-6)=—
(To,) +1 xM k-M

cos(Pm-6) (1)

T _
“’°(a2 )__1 sin(Pm—180—0) =
(To) +1 &M M

sin (Pm—6) (2)

Solving (1) in order to a

1

= ;COS m-— 0] 2+ —
= ~cos(Pm—0)| (To, )" +1] o]

M (Te,)

Substituting (3) in (2) and simplifying one gets:

cos(Pm-0 ) 1 sin(Pm-0 )
_W[(Tmc) +1}—(Tmc)2 —_ K.(I\/Ir.“mc)[(mc) +1}+1
cos(Pm-6) ) T, -sin(Pm-0) ) 7 (To,) +1
Ty (Ui e Rm”*@‘{TEST]
(Tmc)2+1 . B (Tmc)2+1
m[cos(Pm—O)—Tmcsm(Pm—O)]——[WJ
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—_ k- M +cos(Pm-6)
~ o,sin(Pm-0)

Substituting this last result in (3),

a:—%cos(Pm—G)[(Tmc)2+lJ— 12
k-M(To,) (Te,)
a__cos(Pm—G)_ cos(Pm—6)+k-M 1
- Y -M (Tw,)
a__cos(Pm—G)_ cos(Pm—-6)+x-M ; sin® (Pm—6)
K-M K-M w;[k-M +cos(Pm—6)}2
a__cos(Pm—G)_ cos(Pm—9)+K~M sinz(Pm—G)
k-M K-M I:K'M +COS(Pm—e)]2
a__cos(Pm—O)_ sinz(Pm—e)
- K-M K‘M[K-M +cos(Pm—9):|

a:_{(K-M)cos(Pm—9)+cosz(Pm—9)+sin2(Pm—O)J
k-M |:K-|V| +cos(Pm—6)J

k-M [K-M +cos(Pm—9)}

a:_[ (-M)cos(Pm-6)+1 J

[ note ] For the controller to be stable it is necessary that T is positive.
Additionally, in order to ensure that the system is minimum phase, the
value of aT should also be positive. After some tests it was found that,
using this strategy, the gain crossover frequency cannot be arbitrary
chosen. In fact, the crossover frequency is restricted to the values that

make the controller minimum phase.

1.2.6.2 Phase lag Controllers

A phase lag controller usually contributes for the following behavioural system
changes:

» Increase of relative stability by increasing the phase margin

» Decrease the bandwidth

» Decreased the steady-state error

» Reduction of overshoot (higher zeta)
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1.2.6.2.1 Design strategy: Bode plots

Consider a phase lag controller transfer function parameterized as follows:

aTs+1

K(s)=x
®) Ts+1

,a<l (78)

Just like what was done to the phase lead compensator, the gain constant is
estimated in order to satisfy the steady-state error requirements. The
parameters a and T are designed so that the required phase margin is met.

For this type of controllers, the gain decreases with increasing frequency and

the maximum gain reduction is 20-log, (a).

[ proof ]

aTs+1
m
soo Tg+1]

=a=20-log,(a)|,

Usually one defines, for design sake, that the minimum lag controller phase

contribution occurs a decade ahead of the zero location, i.e.

Oy =10- 0, (79)
where
1
© =07 (80)
aT
leading to,
10
Oning = 7 (81)
aT

Thus, once a is selected, the variable T is chosen so that the zero crossover
frequency is away (toward the Bode diagram’s left) from the system critical
frequency (otherwise the additional phase lag can destabilize the system).

Just like for the phase lead controller, below is presented a set of steps that can

be followed in order to design a lag controller [1]:

Algorithm:
Step 1 of 6: Calculate the gain x so that the error constant has the
desired value
Step 2 of 6: Sketch the Bode plot of «G(jo)

Step 3 of 6: If the phase margin is insufficient, one must estimate the
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frequency value at which the phase margin is satisfied (add
5° for safety). This frequency will be the desired gain

crossover frequency (o,
Step4of6:  Find the gain P=[xG(jo)|, at the frequency w=o,.

Compute a from a=10"%.

[ note ] The practical limit to a is 0.1. To add more phase lag is necessary to

cascade compensators.

Step 5 of 6: To minimize the controller phase contribution one must

estimate T by T :i.
am,,

Step 6 of 6: Confirm the final design by drawing the Bode plot of

K(jo)G(jm). Also one must simulate the system closed-loop

response.
1.2.6.2.2 Design strategy: Analytically

Another tuning strategy can be obtained by using some closed-form
expressions just like it was done for the PID controller and for the phase lead
controller. In fact, the strategy behind this method has much in common with the
analytical technique used in the lead compensator design. Thus, considering a

system with transfer function G(s) in series with a phase lag controller with
transfer function:

aTs+1
S+1

K(s)=x with a<1 (82)

and assuming that the system must have, in closed loop, a steady-state error
less than or equal to &, a bandwidth ®, and a phase margin of Pm degrees
than:

(K-M)cos(Pm—9)+1
K-M[K-M +cos(Pm—9):| (83)

a=-—

and

kM +cos(Pm—0)
a o, sin(Pm—G) (84)
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where M and 0 refer to the gain and phase (in degrees) that the system

displays at frequency .. The gain k is obtained by the maximum allowable

steady state error.

[ note ] Since the analytical technique the poles and zeros time constants are

obtained through the division by sin(Pm-8), this method does not

work if the sine argument approaches 180°. Hence, it is possible that a
given set of performance criteria are not attainable with this method. In
my point-of-view the sine argument must not be greater than, or equal
to, 180° since, in this case, the sine function returns a negative number
or zero. With negative values the controller are unstable or non-

minimum phase.

[« CHAPTER 1]
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Chapter

2 Discrete-Time Control

2.1 Sampling and Reconstruction

DIGITAL control has to do with the replacement of the previously reviewed
analog controllers by algorithms running on digital processors as computers,
microcontrollers, DSP's or ASIC's. However, since the information signals
typically presented in a control loop are analog (continuous in time), the addition
of a digital controller requires an intermediate stage of signal discretization (A/D
conversion). As we shall see later, in most cases there is also the need for
reverse conversion. That is transforming a signal from the digital domain back
to analog domain (an operation performed by D/A converters). The figures that
follow are intended to illustrate what one has just said. The “switches” in figure

15 represent the sampling process basic devices: the samplers

----------------------

"0 s . | Y
K | | G(»)

H{s)

______________________

t : yo
ré)—.{ ._.® > » DA > o
! K(z) : G(s)
G |
¥
AD |[«— o «
Hi(y)

_________________________________

Fig 15. Digital controller.
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The signal digitalization step requires:

= Signal sampling at time intervals T usually regular (it is possible to have
variable sampling rates). After this process, one gets a discrete-time signal
but continuous in amplitude. However, digital processors can’t perform
operations with infinite precision. Thus, the amplitude must also be
discretized by a quantization operation.

» The quantization of an analog input, to its digital counterpart, depends on
the number of binary digits used (bits). For example, using a 10 bits
quantization one can represent 1024 different levels. The approximation
resolution is equal to one part in 1024 times de conversion reference
amplitude. For example a 8 bit A/D converter with minimum and maximum
reference conversion values equal to -1 and +1, has a resolution of 2/256 or
1/128. If the signal amplitude does not match an integer multiple of the
resolution, the quantization process drive, as output, the binary equivalent of
the closest value to quantify. So the quantization process adds additional
measurement error. The theoretical minimum error added is equal to half the

least significant bit i.e. J_r%LSB. Figure 16 show the 2 bit quantization error

effect for a ramp signal.

Sinal: x{t)=t
1 ! T T T ! T ! T Ed
] T CCTRRY CISRTRE AU e L -
a E
:g 06 _______? ____________________________________________________________ -
[T —
E o R Wy L, i S S S S 4
0z — ------------------------------------------------------------ =
0 & I I I I I I I I
a 10 20 30 40 50 =il 70 a0 an 100
Tempo*m2

Erro de Quantificagao

%L5B

1 1 1 1 1 1 1 1
10 20 30 40 a0 =] 70 go =] 100
Tempo™ g

Fig 16. Quantization error due to 2 bit A/ D converter.

The quantization phenomenon, as well as its control system effect, will be

addressed further on, in section § 2.1.3.
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Since a digital control system usually requires sampling operations, its
understanding is of fundamental importance. For this reason the following
section lays down the sampling process mathematical foundations. This

knowledge is essential for digital control systems analysis and design.
2.1.1 Process Sampling*

Whenever a digital processor is involved, for measurement, signal processing
or control, the data and systems involved are, in their nature, discrete-time. In
this section we are particularly interested in discrete-time signals obtained by
sampling, in time, an analog® signal. This section purpose is to establish a
mathematical model for the sampling process. This model will be useful in order
to take into consideration possible closed-loop dynamics changes (compared to

the analog one). In this framework consider the following figure:

e(f) e o= o 25(8)

3*

D |
O
N
3
(F) e(f)

Fig 17. Figurative model of the ideal sampling process.

Let's imagine an analog electrical signal e(t) (for example a voltage) applied
upstream to the previous figure switch. Consider also that the switch is pressed

in regular time intervals 0,T,---,nT,---,¥neN, and during an infinitely small

instant. At the switch downstream one predict the appearance of the theoretical

signal with the appearance presented in the figure 18.

[Note] This is an ideal model of sampling since the output signal is composed
by a sequence of (non-physical) impulses (symbolized by arrows). In

the real world there are no impulses but short duration pulses [12].

One can see that the sampled signal is a weighted impulse sequence (impulse
train). The weighting factor is not more than the signal amplitude at each

sampling time nT . Thus, the sampled signal can be written as a weighted sum

* A previous study to Annex A2 is advised.
5 An analog signal is a continuous signal both in time and amplitude.
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of shifted in time impulses:

&' (t) = e(0)3(t) + e()S(t =T ) +-+-+e(NT)S(t —NnT) +-+- = e(t)-i&(t— ) (85)

[ note] The function 5(t), designated by impulse or Dirac delta represents a

theoretical signal without physical existence. Conceptually this signal
describes a pulse with infinitely small duration and infinitely high

amplitude.

0,ift+0
d(t) = .
o,if t=0

This signal also admits representation in the discrete-time domain. In
this case the signal are physically realisable and has the following
formulation:

0,if n#0
o[n]=+4 .
1,if n=0

1 T - 1 .'—f
0 T 2T @w-1T uT +L)T

Fig 18. Relationship between the upstream and downstream signals of the ideal
sampler.

From the previous expression the sampling process can be viewed as the
product of a periodic impulse sequence with period T by the sampled signal

e(t). In other words we are witnessing an amplitude modulation strategy where
the carrier is the impulse train and the modulating signal is e(t). This concept is

illustrated in the following figure [12].

Let us now consider the effect of signal sampling in the frequency domain. In

order to do this let’s apply the Fourier transform to the sampled signal €' (t):
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€ (1) =e(t)- 380 -1T) SE " (jo) = 5~ E(jo)*A(jo) (86)

n=0
where E(jo) refers to the Fourier transform of e(t) and A(jw) is the Fourier

transform of the impulse train.

2(£)

]

4T3T2T-TO T 2T 3T 4T5T | ¢

Fig 19. Sampling seen as an amplitude modulation.

[ note ]
(1) =s(t)- p(t)—>R(jo) =2—1n[8(jco)* P(jo)]

R(jo)=S(jw)* F’(J'OJ): r(t)=s()- p(t)

Since the impulse sequence is periodic with period T , its Fourier transform is:

A(jo) = E 2n-C, -d(ow—Kko,) (87)
where
1 T/2 1
— 7jkm0t —
(:k —-i: I S(t)'e dt —'i: (238)

-T/2

[ note ] Sifting property [4]

+00

j f(©)8(t—t,)dt = f(t,)

—0

f(t,) se ast <b

0 remain cases

b
j f()8(t—t,)dt :{

Then,
. 2 —+00
A(jo) =$ Y s(0—ko,) (89)
k=—c0

which leads to the conclusion that, in the Fourier domain, an impulse train in the
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time domain is also an impulse train but in the frequency domain. In the

frequency domain the impulses appear spaced by o, =2n/T and weighted by a

constant factor equal to 27/T .

As already said, the sampling signal frequency spectrum can be obtained by the

following operation:
¥, - 1 . .
E'(jo) = —E(jo) *A(jo) (90)

The convolution between the two spectra, E(jo) and A(jo), is calculated using

the convolution integral as follows:

E*(J'CO)=%“ E(jQ)-A(j(co—Q))dQ} (91)

—00

Substituting A(jw) by 2T—n Y 3(w—kw,) we have:
k=—o0

E*(J@):i{j E(]Q)%I_—nkiS((D—kwo—Q)dQ} (92)

—00

i.e.,

E*(jco)le _[E(jQ)- iS(co—kcoo—Q)dQ
—»o k=—c0

E*(jw)=Tl fi E(jQ)-8(0—ko, —Q)dQ

| - k=—00

Since the integral of the sum is equal to the sum of integrals one get,

E*(jco)le Zw TE(jQ)-S(co—kcoo ~Q)dQ

| k=—0

By the sifting property, and because &(w—kw,—-<) is only nonzero for

o—ko,-Q=0 or. Q=n-ko,, one get,

E'(jo) =le E(j(0—ko,) (93)

This last expression means that the sampled signal spectrum is periodic in
frequency with fundamental period o,. Effectively the sampled signal spectrum

is equal to the continuous signal spectrum repeated indefinitely with a period

that depends on T . Additionally the spectrum energy of the sampled signal is T
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times lower than the continuous signal spectrum.

In order to illustrate the sampling effects in the frequency domain consider an

arbitrary signal e(t), band limited, whose spectrum has the following generic

profile:

1E(jo)|
1

-
'

1 | T
- i ) i [£)]

Fig 20. Frequency spectrum (magnitude) of a generic signal.

In graphical terms, the expression (92) represents the overlap of |E(jm)|

replicas shifted in frequency by ko, and amplitude scaled by 1/T. Figure 21

show the magnitude of ‘E*(joa)‘ .

| (Jw)|

1
T

1 | 1 1
- w oo, ot
e » - ]
Wy My, 7 gt

Fig 21. Frequency spectrum after sampling the signal.

From the previous figure, one can presume that it's possible to reconstruct the
continuous-time signal from its sampled version. To do this we just have to

eliminate the sampled signal spectral components above and below +o, . This

operation can be performed by a low-pass filter.

It thus appears that, theoretically, it's possible to obtain the continuous-time
signal from the sampled one by filtering. However, in order to be possible, two
conditions must be fulfilled. The first refers to how the signal is filtered and the
second to how the spectrum is distributed. Regarding the former, this will be the

study subject in section § 2.1.4.

Concerning the second condition, and observing figure 21, one concludes that,
to be possible the original signal recovery, overlap of adjacent bands between

the replicas is not allowed. Since the relative position between adjacent spectra
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depends on the sampling frequency ®, then a necessary condition for the
invertibility of the sampling operation that o, <wo,-®,, or ®,>2w®,. This

condition is known as the Nyquist theorem (sometimes Shannon's theorem). It
establishes that the sampling rate must be greater than twice the maximum

signal frequency component (with significant amplitude) to be sampled.

[ note] The frequency equal to half the sampling frequency is called the
Nyquist frequency. This convention will be followed in the course of this

document.

If this condition is not fulfilled, a time phenomenon known as aliasing, occurs..
In this case one witness a distortion where the signal frequency components,
greater than half the sampling frequency, are translated to the limited interval

[—mo/z,mo/z]. The effect of continuous signals under-sampling will be subject to

further analysis in the following section.

Just to conclude one must warn that, in the discrete domain, the signal
spectrum is often represented using a frequency axis normalization by a factor

equal to the sampling period. Thus the axis o becomes the axis ®, and the

relationship between them can be expressed by the following equality:

0, =0T (94)

The frequency o, is usually called the “digital frequency” and, as can be

inferred from the above expression, this frequency does not have the explicit
notion of time. Then it's measured in radians per sample [12]. By using this
frequency normalization figure 21 is replaced by the following alternative

representation:

|E*(Jeog)|

1
T

1 | T
-Ta, -To,,

Fig 22. Frequency spectrum as a function of digital frequency.
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So, in the digital domain, the sampling frequency is equal to 2n. In fact,
replacing in expression (93) ® by o, =2n/T we obtain o, =2n. Additionally,
taking into account the previous figure, the relationship between the Fourier

transform of continuous signal and its sampled version is:

E(jo)=T -E'(joy)to -t<w, <= (95)

where 1 represents half the sampling frequency (the Nyquist frequency).
2.1.2 Sampling distortion aspects

As mentioned earlier, a strange phenomenon can arise when a continuous
signal is sampled in time: high frequency components of the analog signal may
appear as low frequency components (but with unchanged amplitude) in the
discrete-time signal. This phenomenon is called aliasing and occurs whenever
the sampling frequency is less than twice the maximum frequency component
of the sampled signal.

In order to illustrate what was just said, consider the example of a simple
monochrome signal, x(t)=sin(4nt), sampled at two different rates 2.5 Hz and
10 Hz. The results can be evaluated by visual inspection to figure 23 (the

markers represent acquired signal samples).

Fsinsl=2Hz Famnsl=1DHz
1 [ T T g T [ri __\ T T P \_\ T
05 fy X . i \i / %
/ [\ / \
0 Z JJ ! J{ 4
\ _Ir'l' | / \ / \ /
1 Vi i \ \
-0.5 i \ J/ ‘.‘ -;.." \
¥ ¥, i L W
/ / N\ / N\
A L D 1 P AT L L NI L 1 % /
0 0.2 0.4 08 0.8 1 1.2 1.4 16 18 2
Tempo/s
Faina=2HZ  Fapegt™2-5H2
1 T J TN T T b ¥ T N
"\ / \ \ S i
\ A / - I
0.5 / Y i | ¥ -l | { i 1
| / \
/ \ { \ / \ )
ok 1 |'II \ { / \'. o
.~ / 1 !
ll'\l Ir'll \ _.r \'. .'II \ f
05 b 'Y \ \ / |
- B 1 / . / / \
/ / \ /
p P WpletT P T ; Pa
0 0.2 0.4 08 0.8 1 1.2 1.4 16 18 2
Tempo/s

Fig 23. Sampling frequency effect: aliasing example.
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Note that, contrary to what may seem at first glance, only the samples are part
of the discrete signal. However, for better visual perception of the aliasing
phenomenon, the markers are connected by line segments. In reality what one
are doing, when joining the dots with line segments, is a sampled signal

reconstruction using a 1 order linear interpolation:

x(t) =2 t+x[k] KT <t<(k+DT

k +1]—x[k]
T
From the previous figure it is also clear that the discrete signal, that has been
undersampled, seems to have a frequency lower than the frequency of the
analog signal. Furthermore it is found that the digital signal frequency (after

reconstruction) is equal to 0.5Hz!

In general, the value of a given frequency component, of a undersampled

signal, can be obtained by [1]:

(co+&)%coo ]
2 2

where the % operation refers to the remain after division.

walias -

(96)

Another alternative is to recurrently subtract the sampling frequency component
signal until the result is smaller, in magnitude, than the Nyquist frequency. At
this point the resulting frequency is the signal apparent frequency. This

procedure can be summarized by the following equation,

20+,
0 -0,
20,

where the operator |_J rounds its argument toward zero.

0)alias -

(97)

For example, if o, =2.5 and =26 this means that, using equation (96),

alias

O =[(27.25%2.5)~1.25| =[2.25-1.25 =1 rad/s

On the other hand, by subsequent subtractions one gets,
Oy =26—2.5-25—---=25=26-10-2.5=1rad/s

alias
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[ note ] In control systems, aliasing causes another more subtle problem. In
general, in continuous-time control system, signals contaminated with
high-frequency noise outside the control system bandwidth, don’t
usually affect the system response. The same cannot be said for
sampled systems since frequencies above n will be folded back to the

frequency range of interest.

[ note ] Besides the transformation from high to low frequencies, under-
sampling also has a reverse effect on the spectrum. For some
frequency ranges one witnesses a decrease (increase) in frequency
when the digital analog frequency increases (decreases). This

phenomenon can be evidenced by observing the following figure.

—‘I‘E ......................

For analog frequencies between kw,/2 and kw,, vk eZ, a frequency

increased implies a decrease in module, of the digital frequency

(remember that the negative sign refers to phase information only).

Apparently, the aliasing problem seems simple to fix: we sample an analog

signal ensuring that the sampling frequency obeys the Nyquist theorem.

However things are not so simple. This is because frequency spectrum of a real
analog signal never ends abruptly at a given frequency. It's not possible to
acquire an analog physical signal which is band limited in bandwidth (like the
one shown in Figure 20). In theory, due to random noise, the spectrum of such
signals extends from minus infinity to plus infinity. This implies that,
independently of the chosen sampling frequency, there will always be
sidebands overlapping. However, almost all of the signal energy is contained in
a narrow frequencies range. Thus the signal high frequency components,
conveying no information, must be eliminated or severely attenuated. A low-

pass filter is usually in charge of this task. The location of this filter, within a
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control system loop, is shown in figure 24.

U] ; »
A H@ » » DA —> + 0
l K(z) l G(s)
| i i
| v |
| AD |« ol PUESENSORE
| ) H(s)

_________________________________

Fig 24. Reducing the effect of aliasing by introducing a pre-filter F(s)

Obviously this filter must be analog. Frequently it's implemented using
electronic active and passive components such as operational amplifiers,

capacitors and resistors.

Typically these pre-filters, inserted upstream of the sampler, are called anti-
aliasing filters. The choice often falls to filters with a first-order type transfer
function:

1
SO s (w)2) (98)

However it is also common to find higher order filters as the case of Butterworth
and Bessel filters. The latter have the advantage of having an almost linear
phase (within the frequency range of interest) which implies low distortion of the

signal profile.

Note that the bandwidth of the anti-aliasing filter is usually much higher than the
bandwidth of the system. This implies that the additional dynamics introduced
by the filter can be neglected in the design procedure. However the influence of
the filter should be taken into account in the global simulation of the control

system. This theme will be deeper analysed in section § 2.6.2.
2.1.3 Quantization

In the digital control context there are three facts usually unavoidable:
= A digital controller is based on a digital processor (computer, uC, DSP,
ASIC, etc.).. This component is responsible for establishing the

relationship between the control signal and the system information.
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= A digital processor deals with binary coded information. Due to this fact,
the arithmetic operations performed in a digital processor, always have
finite precision. The operation accuracy depends on the device
wordlenght.
= The control processes are usually "analog". Thus one needs a control
signal decoder to translate the processor’s bit string into, for example, an
analog voltage.
These considerations are objectively illustrated in figures 15 or 24. Ignoring the
digital processor type, there are two system blocks: an A/D converter and D/A
converter. Each component performs two separate functions. The A/D converter
is responsible for:
= Sampling the signal (sample & hold);
» Encode the signal. i.e. by comparing the input signal magnitude to a
reference minimum and maximum threshold, it converts a given value to

a n bit binary word.

[ note ] In practice the A/D and D/A conversion are performed, on electrical

signals, using integrated circuits.

On the other hand, the D/A converter take a binary string and, from a pair of
fixed limits, turn it into an analog value. Besides decoding it also performs a

reconstruction operation that will be a study subject on the subsequent section.

Returning to the A/D conversion, signal encoding involves the loss of
information. This is because, viewed from another perspective, a signal with an
infinite number of levels is transformed into a finite number of levels signal (level

quantized). In an A/D converter the number of quantization levels depends on
the number of resolution bits and is approximately equal to 2" —1. In the case of

an A/D converter, with reference imposed by [X,.. Xy ], the quantization

effect can be modelled by the following expression:

Xquart (1) = 9 -round {x(t)/q} (99)
where
_ XMAX B XMIN
a 2" -1

and n refers to the number of converter bits. Figure 25 shows the effect of an 8
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bits quantization of a error signal injected to a controller. Note that the
quantization performance depends on the dynamic range in which the
conversion is done (the relationship between the signal amplitude limits and the

A/D conversion limits).

Additionally, due to finite precision of the digital processor, a rounding or
truncation error resulting from arithmetic operations should also be considered.
Although the latter problem is not easily noticeable when using floating-point
format (for example computations using MatLab®), but is evident in fixed-point
format. For example performing multiplication operations on a 8 bit

microcontroller using Q7 format.

08+

=
@

=== Sem CQuantizagio
| = Quantizado em & bits |

Erro Absoluto//
o
=

=
[
T

0 5 10 15 20 25 30 35

Fig 25. Effect of amplitude quantization. (Dynamic range of conversion between -
10 and 10 V and 8-bit coding)

[ note ] The quantization errors introduced by 16 or 32 bits processor are

usually negligible in the digital control context.

In general, in controller design procedures, the quantization effect is neglected

and only examined, at the end, with computer simulation.
2.1.4 Reconstruction

This section talks about the reconstruction problem of a discrete-time signal.
Strictly speaking, in practice, one are more interested in "construction" than
"reconstruction." This is because the control signal is digitally and not obtained
by time discretization. The term “rebuilding” is usually employed bearing in mind

the recovery of a sampled signal that has been originally continuous.
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At first the mathematical concepts, underlying the reconstruction of a sampled
signal, are presented. Additionally we present the conditions, under which, this
recovery can be attained. The reconstruction problem, in the context of digital
control, is then addressed. Prosecuting this subject, the dynamic influence of

the D / A converter in the control loop, will be analysed.
2.1.4.1 Ideal Reconstruction

Theoretically, if properly sampled, a continuous signal in time can be

reconstructed using an ideal low-pass filter. For a convenient reconstruction is

necessary that the filter has cut-off frequency o, < |oac| <®,/2 and magnitude, in

pass-band, equal to T as shown in the figure below.
|Hj® )4

- |
@, @,

Fig 26. Reconstruction of a sampled signal (magnitude normalized)

The reconstruction sequence of a continuous time signal, from its sampled
version, is the product of the sequence Fourier transforms by the ideal low-pass

filter Fourier transform. In mathematical terms one write:

E(jo)=E"(jo)-H(jo) (100)

were E(jm) is the Fourier transform of the reconstructed signal &(t) . In the time

domain the previous relation is expressed as:
e(t)=e’()*h() (101)

On the other hand, the impulse response of the ideal low-pass filter can be

easily derived using the inverse Fourier transform definition. Thus,

IR N
h(t)_ZIJ Te'do
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leading to,

T [eiet]™ T _ . T o, T
h(t) = —- =——| el —e 1 | = —.sin(w,t) = ——sinc(m t
® 2n{jt]ﬂ 2njt[ ] it (@) T (@)

Considering the equation (101) and the convolution definition one get:

~+00

g(t)= Y e(kT)h(t—KT)

k=—ow0

and finally,
gt)= T Zw: e(KT)-sinc(w, (t—KkT))
L —

: 2 . .
For o, :% and given that T =" the previous expression becomes:

O,

et = z e(kT)-SinC(%(t—kT)j (102)
k=—o0

Although the ideal reconstruction operation may be achievable mathematically,

in practice this approach start of an invalid assumption: the existence of ideal

filters. In fact, and analyzing the impulse response of the filter, it turns out that

it's not causal hence physically unrealisable.

[ note ]
A linear time-invariant system, with impulse response h(t), is causal if, and only
if, the impulse response is zero for values of t<0. This consideration is quite

simply to understand. Consider, for example, the following impulse response:
LAt

VA

The impulse response is the response of a system to an impulse. An impulse
response, as the one showed in the previous figure, suggests that, even before
a pulse is applied to the system, he begin to responds. On other words, an

impulse 8(t) is applied to the filter at t =0 and the response system anticipates

the cause that gave rise to it. Of course, in physically realizable systems, the

system cannot sense something that has not yet happen.
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2.1.4.2 Real Reconstruction

Usually, even in a digital control system, the control plant is continuous in time.
Thus, even if a discrete signal can sometimes be used to drive system directly,
this procedure is rarely used due to high frequency components of the signal
injected into the actuators. Thus the decoded control signal is usually converted

into a continuous-time signal.

Let us now consider how this conversion can be done. In the previous section,
the conversion procedure suggested the use of a ideal low-pass analog filter.

Now let’s imagine the closed-loop structure illustrated by figure 27.

: Y
R(s) +@ E(s) 4 . M(s), M(s), {eg
I_ K(z) H(s) G(s)

Fig 27. Microprocessor control of an analog process

At a given time instant kT the microprocessor outputs a control signal m’(kT)
using some control law. This value is applied to the process and the next control

signal value is applied only in the next instant (k+1)T .

Between discrete time instants, kT and (k +1)T , which control values should

be applied to the system?

[ note] In real-time control there are causality constraints. Thus it's not

possible to access the control signal future values.

At the present instant, only m"(kT) and its past values are known. For this
reason it is necessary, only from the known data, to forecast the control signal
values between sampling periods. It's necessary to infer the most likely values

between the present sample and the next one.

[ note ] The predictive nature of the reconstruction system is closely related to
the non-causality of the ideal analog filter introduced in section §
21.41

One way to accomplish this prediction is by polynomial extrapolation [13]. From

www.ipb.pt/~jpcoelho/download.htm 73




DIGITAL CONTROL

the present and past knowledge, and using a polynomial function, one predict
the more likely values of the control signal between the sampling instants kT
and (k+1)T.

Let's see how a possible polynomial can be derived. First it's necessary to

expand the signal m(t), using a Taylor series, around the point t =KT :

dm)| =KD" d’me)
dt |_ p! dt®

m(t) = m(KT )+ (t —KT)- (103)

e

[ note ] Taylor series expansion of a function f(x) around x=a:

& (x—a) d¥f(x
(0= S0 100

X=a

The analysis of the previous expression provides some clues regarding the
impossibility of knowing, with certainty, the control signal values between
samples. In first place the polynomial can be infinite and, in second place, the
coefficients calculation requires the knowledge of the signal derivative at point
t =KkT . The formal derivative definition is given by the following equality :

dmt)| i M+ h)—m(t)|

dt |, "0 h |t:kT

(104)

I's clear that the derivative operator is not causal and requires knowledge of
signal values for posterior moments regarding t=kT . Thus, because one has
only knowledge of past and present values of the command signal, in the
discrete-time domain the derivative is approximated by:

dm®)| _m®)-mE-T) . dm(KT)  mKT)-m(k-DT)
dt e T e dt T (105)

Because it’'s impossible to compute an infinite number of derivatives, expression
(103) must be truncated at a certain point. With this strategy higher order

derivatives are ignored.

Since one can select the truncation point, one alternative is to disregard all
derivatives of order higher than zero. This strategy leads to a zero order
polynomial extrapolator commonly referred to as zero-order (zero-order hold -

ZOH). In this context, and since the approximation must be valid only between

74 jpcoelho@ipb.pt




DIGITAL CONTROL

sampling periods, the reconstructed signal is:

m(t) = m(kT) for kT <t <(k+DT (106)

With this signal model the prediction made is of naive type: the model assumes
that the command value does not change between samples. In the time domain

the appearance of zero-order holder output signal is:

Fig 28. A discrete-time signal reconstructed by a zero-order holder

An alternative way to write the previous expression is:

m(t) = m(KT)-[u(t —KT)—u(t —(k + DT)] (107)

Where u(t) concerns the Heaviside function (discrete-time step function). The

zero-order hold work as one input one output system. The present sample is fed
to the input and the ZOH deliver, at the output and during one sample period, a
control signal prediction based on this sample. If one applies an impulse to the
ZOH input then he reacts with his impulse response. In mathematical terms, the

ZOH impulse response is obtained by:

(1) = 8(kT)-[u(t—kT)—u(t—(k +1)T)]

where §(t) refers to the impulse function. Thus, by definition, 8(kT) is only
nonzero for k =0 and then the previous expression takes the following form:

hogn (1) = [u(t) —u(t-T)] (108)
Were u(t)—u(t—T) represents the “window function” with length T. Then one

concludes that the zero-order hold creates a pulse for each input impulse.
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The frequency response of this device can therefore be calculated by applying
the Fourier transform to the previous expression or, alternatively, by assessing

its Laplace transform along the jo axis.

Under the latter strategy one gets,

1 efST l_efsT
H(s)=————=
(8)=2-— S (109)

Since H(jo)=H(s) the previous expression becomes,

s=jo?

. 1—e et
H(jo) = i (110)
Or else,
T e a2
H(jo)=e "2 5 ——

Taking into consideration the Euler identities the Fourier transform becomes,

,jm5
H(joo)=2e sin[wl]
0 2
in other words

T
—jo—

H(J'OJ)=T-sinc(w%j-e 2
. . 2n
and finally, if we note that o, =T

H(jo)=T -si o) g,
=T-smmc| t—|-&€ ™
Jo® sinc n(;) (111)

0

[ note ] Euler's Identities

io -j6 IR
cos(®) == and sin@)= =5
2 2]

A draft of the zero-order holder frequency response is illustrated in figure 29. As
one can analyze by equation (111), the amplitude frequency response is a

damped sinusoidal and the zero-crossings occur at integer multiples of o,. The

spectrum amplitude is sampling period dependent and the system phase
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changes linearly with the frequency. However, as can be seen in the figure

below, there are multiple unwanted peaks in odd multiples of the Nyquist

frequency, i.e. (2p+1)w,/2,p=1,2,-.

Magnitude (normalizada)

o

Fig 29. Frequency response of a zero-order (magnitude normalized)

Note also that, at the Nyquist frequency, the attenuation is approximately 4 dB
and the gain in pass-band is not constant. Due the latter consideration, a
spectrum distortion of the applied signal is observed. Additionally, from
expression (111), it can be concluded that the ZOH performance as extrapolator

strongly depends on the sampling frequency. In fact if o, > then H(jo) > T .

This means that the output signal can be made arbitrarily close to the input

provided that the sampling period can be made arbitrarily small.

Although other reconstruction strategies can be derived, such as first-order
holders (see problem E21) the zero-order holder is, by far, the most used (a
common D/A converter performs exactly this function). Therefore this subject

will not be prosecuted.
2.1.4.3 Effect of the ZOH dynamics

The transfer function of a zero-order holder has the following appearance:

1 _ e—ST

S

G,on(8) = (112)

Using this expression we draw two important conclusions. First, and given the
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final-value theorem, we see that:

: . 1-e (0

birn G (8) = lim — =(5) (113)
Using the I'Hopital rule, the limit as s approaches zero , become

) 1_ —sT ) e—sT

gy — = g == (114

Please recall that, at the beginning of this chapter, it was seen that the sampling
process has, as a side effect, the spectrum amplitude scaling by a factor

inversely proportional to the sampling period,
. | o, o,
E(jco):?E(joo) to —7<03<7 (115)

Thus, if a zero-order is used upstream the system, then it's not necessary to
adjust the controller gain (this concept will be reviewed later on when talking

about the z transform).

In order to detect another details about the ZOH transfer function, one begin to

expand G, (s) using a Taylor series around T =0:
e =1 ST+ L (sTY — L(sTY + L (sT) =L (sTY 4
2 6 24 120

Substituting in equation (110) one gets,

1_(1_3T+;(5T)2_é( T+ (ST - L T)5+~--j

G (8) =
S
and after simplification:
1 1 2 1 31 4
G =T|1==(sT)+=(sT) =—(sT) +—(sT) —---
w®=T (12T L ($TY = (6T + (5T

On the other hand it is easy to show that:
L 1 1 2 1 31 4
Te 2=T|1-=sT+—(sT) ——(ST) +—(sT) —---
( 2 8( ) 48( ) 384( ) )

Now neglecting the terms of order greater than one:

T
G (8)=T e 2 (116)
In fact, as shown in the figure 30, the accuracy of approximation (116)

decreases with the sampling period increase.
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Fig 30. Relative error of approximation G, (S) =T e 12

This approximation is very useful for controller design using frequency based
design techniques like Bode plots. In terms of Bode diagrams, a zero-order

holder contributes with a gain equal to 20-log,,(T) and a phase lag that

decreases linearly with frequency with a slope equal to half the sampling period
(pure time delay). If the sampling period is large then the phase slope in acute
and the ZOH has a large impact on the overall system frequency response. This

is because a delay in a control loop is always cause of instability.

[ note] As one will see further ahead, the zero-order contribute to system
destabilization by reducing the system phase margin. The phase

margin decrease is directly proportional to the sampling period.

When the design method is based on time-domain techniques such as the root
locus, often a pure time delay of T/2 seconds can be crudely modelled by a

first order system with the following appearance:
2/T
s+2/T (117)

G, () =T

An alternative way is to express the pure time delay using the Padé
approximation [6]. This strategy finds a set of parameters in order to minimize
the error between the exponential McLauren series expansion and an arbitrary

order k transfer function. The pure delay Padé approximation is obtained by
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solving the following minimization problem subject to proper transfer functions:
bs+hb
. — . Y e—STd _Y 1 0
min () mln{ ( ) (—als+1 j} (118)

In the above expression Y() refers to the McLauren series expansion of a

function. It should be noted that the complex exponential is analytic for any finite
value of s (it. has norder derivative). Thus, given that the series expansion of
both components is the sum of an infinite number of terms, the minimization of
(118) involves the solution of an infinite number of equations with a finite
number of unknowns. Thus, for example, in case of first order approximation,
the solution of the minimization problem has only three degrees of freedom thus

the McLauren series expansion is made only up to order three.
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Fig 31. Response time in a zero-order and its approximate model for the analysis
of digital control systems in the frequency domain

For the case of the zero-order hold, the first order Padé approximation is:
1-(T/4)s

Gzoh(s)sz (119)

Any of the previous ZOH approximations can be used to estimate the negative
impact on system stability, due to sampling. The approximation (116) is
especially suitable for frequency-domain design techniques and equations (117)
or (119) for time-domain techniques. Figure 31 illustrates the quality of

approximation by equation (116).
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2.2 The starred transform and the Z transform

The sampler-and-hold operation, illustrated in the figure below, can be analyzed

by taking into consideration the waveform of Figure 33.

Be) o El) g LM
e(t) &'tt) = m(t)

Fig 32. Block diagram of a sampler / zero-order

0 T 2T 3T 4T 5T BT 7T 8T 9T 10T 11T 12T 13T 14T 18T 167

Fig 33. Generic example of a signal applied upstream of the system of Figure 32
and its output signal.

One observes that m(t):e(t)| and, in between sampling instants, the

t=kT

reconstructed signal can be written as:
m(t) =Y e(kT)-{u(t—KkT)—u(t—(k +DT)} (120)
k=0

Now applying the Laplace transform one obtains,

—KkTs

4o —(k+1)Ts
M(s)=2e(kT){es _g }

S

M(s)= 3 e(kT)-e™" {1—5}

A Ts
By putting ! in evidence becomes:
l_eiTs < —kTs
M(s)=— -y e(kT)-e (121)
k=0

As one can see, the factored term is independent of the input signal e(t) and
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corresponds to an already familiar element: the transfer function of the zero-

order holder.

On the other hand, the factor
D e(kT)-e ™
k=0

depends on both the sampling period and the input signal. Represents in the
time domain, a weighted sum of pulses shifted in time, i.e. the product of the

input signal e(t) by a periodic pulse train with period T . Thus, this second
factor, represents the action of the ideal sampler and is defined, as already

introduced in section § 2.1.1, as E’(s).

Due to what was above said, the output signal of an ideal sampler is defined as

the signal whose Laplace transform is:

E'(5)= 3 e(kT)-e ™ (122)

The E'(s) is usually called the starred transform of E(s).

[ note] If e(t) is discontinuous in t=kT then e(kT) is taken into e(kT"). In
other words, the value that e(t) takes when t approaches kT by right

hand values.

On the other hand, even without explicit intention, the stared transform was
already defined in section § 2.1.1 on a different perspective. It was then

demonstrated that an alternative definition for a starred transform would be:
* - 1 = -
E (Jo) =T > E(j(0-ka,))
k=—c0
which, in the Laplace domain, has the following aspect:

E*(S):lei EGs— jko,) (123)

This expression allows us to conclude one of the first starred transform

properties:

The starred transformed E’(s) is periodic in s with period jo, where w, refers

to the sampling period.
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This conclusion can be strengthened if one considers that in section § 2.2.1 it
was shown that E'(jo) is no more than (unless a scale factor) the signal

spectrum E(jo) repeated from o, to o, .

Another fundamental starred transform property states:

If E(s) has a pole at s=a then his star has transformed into an infinite number

of poles located, according to the plane sin s=a— jko, forany keZ.

Note that the same cannot be said about the zeros. Thus, even if they check the
first property, normally the zeros are not mapped into the s plane in the same

way as the poles as we shall see later with an example.

Suppose a second order system with a pair of complex conjugate poles with the

following format:

E(s) = 1

= . —,VoeR",VoeR
(S+o— Jo)(s+o+ Jo)

If ®<w,/2 the poles of E'(s) are s=-c+ j(o—ko,),Vk € Z and the poles map

has the aspect illustrated in figure 34.

[ note ] Usually the frequency range between [—0)0/2,0)0/2] is designated by

primary strip and the remains by complementary strips.

The question that now arises is:

A different pole-zero map for E’(s) is obtained for every different poles

constellation of E(s)?

No. If we consider, for example, w=w,/4 then the E’(symap of poles,
regarding this modes, is exactly identical to the map that one would obtain if
o=30,/4. In general one can say that any E(s) pole located in
s=-c+ j(o—ko,) result in a identical map of poles for E'(s). This statement

can be seen, bellow, in figure 35.

www.ipb.pt/~jpcoelho/download.htm 83




DIGITAL CONTROL

& Im{=)}
TSR EERRE W+ Mg
[L1]
Woew e e e -+ (_00 ®
_________________________________ —9o
W o (2] 2
-G bl
“ Re{s)
............ —m
__________________________________ Do
Womw e o — (_ﬂo 2
—mo
>.< ............ () — 0)0

Fig 34. Map of poles of the star transformed into a system of second order under-
damped.

Now taking into consideration only the primary strip, and if one apply the inverse
Laplace transform, we observe that, while the signal for the leftmost s plane
maintain its frequency, the rightmost one will show a lower frequency. What has
been said lead us to the problem of frequency aliasing distortion (see § 2.1.2).
Effectively, in the second case, the signal modes are above the sampling
frequency. Thus, eliminating the secondary strips (by the filtering process), one

observe the appearance of a lower frequency signal.
2.2.1 Evaluation of E * (s) in closed form

The starred transform format presented earlier (equations (122) and (123)) has
an algebraic limited applicability (usually restricted only to time series). An
alternative way to calculate a system starred transform, if the Lapace transform

is known, results from applying the following equation [13].

* 1
E'()= 2 RCS{E(M'W} (124)

at the poles
of E(A)

where the operator Res{-} refers to the residues of the argument expression.

The calculation of the residues associated with each of the poles follows one of

the two possibilities:

» The system has a simple pole at s=a,
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E()

1 _ e—T (s—2)

.

=(r-a)

A=a

EQ)

=T (s-1)

l1-e

A=a

» The system has multiple poles at s=a with multiplicity m,

-1
EQ) 1 (dn " EQ)
Res T(h) = | m-1 (7\’ - a) T(sn)
1-e o (m=D1)1dA 1-e
=a A=a
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Fig 35. Map of poles for the same continuous system sampled at different rates.

In cases where the system transfer function includes a pure time-delay (an
integer number of the sampling period),

E(s)=e*"-E'(s), Vk e Z
then

E'(s)=e"™ > Res

nos pélos
deE'(%)

{ E'G)-(1-eTe )1}

A few paragraphs ago, when talk about the properties of the starred transform,
one said that the continuous transfer function zeros were not mapped in the
same way as the poles. This statement can be validated through the following
minimum phase system:

s+a
E(s)=——
®) s+b

By the residue theorem one obtain,
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A+a 1

E'(s)=A+b
®) A+bl-e M|

which leads to:

E*(S):l—(ea%

e—Tb

The E'(s) pole is located at:

—Ts'e—Tb =0:>e—Ts =eTb :>S=—b

l1-e
However, the complex exponential function is periodic with period 2kz for all

k €Z (justlook at Euler's formula!). Thus,
l—e™.e™=0c1-e ¢ IHT g™ -
Since o, =2n/T
|—e TGtikeo) gTo _
which leads to s=-b- jko,. Thus, as predicted, the poles within the primary
strip have the same location as the E(s) poles. On the other hand, while E(s)

has a finite zero E'(s) has no zeros!

2.2.2 The Ztransform

As we shall see later, the starred transformed is a useful tool for discrete time
systems analysis. However, the transfer function of a sampled system, unlike
the continuous systems counterpart, does not appear as a ratio of polynomials
(note the example of the complex exponential in the previous section).
Moreover, and recalling the aspect of a sampled system poles-zeros map, we
find that these are infinite in number which does not help when using the
singularities location for system analysis. Thus, an alternative strategy is

presented.

This new strategy is nothing more than a variable swap: e*" in E'(s) is replaced
by the variable z . With this procedure the sampled system transfer function can
be written as a z polynomial ratio. This transformation is appropriately
designated by z transform and, regarding the starred transform, can be

described mathematically as:

E()=E'(s)| . (125)
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Equations (122) and (124) can take a different form by expressing them as z

functions:

E(z)= i e(kT)-z™* (Bilateral transform) (126)

k=—w

E(2)= Ze(kT) .z7* (Unilateral transform)
k=0

EQ)= Y Res{E(x)-(l—z-‘e”)"}
s

(127)

Since the z transformed was derived from the Laplace transform, it inherits

many of its features. One of them is the concept of convergence region. In this

case the convergence is assured if |E(z)| <« that is.

[E(2)|= i e(kT)z ™

<3 JekT|z [ <o (128)
k=—00

The set of values for which the z transform converges is called the
convergence region. As we shall see, graphically the convergence region
consists on a ring in the plane z cantered at the origin who's upper and lower

limits can be a circle or extend to infinity.

[ note ] Remember that the Laplace transform is for continuous-time the same

way as the z transform is for discrete-time systems

A summary of z transform properties is presented in the following text box. This

subject is further explored in detail in [12] and [14].
2.2.3 Modified Z Transform

In section § 2.2.1 when talked about systems with pure time delays, integer
multiples of the sampling frequency, it was said that they admit starred
transform representation as:

E*(S)zeiskT Z ReS{EV(}\’),(l_e—T(s—X))—l}

nos pélos
deE'(X)

(129)

where E'(s) refers only to the polynomial transfer function component.

Likewise, and taking into consideration what was said in section § 2.2.2, the

www.ipb.pt/~jpcoelho/download.htm 87




DIGITAL CONTROL

previous equation is replaced by the following z shaped one:

E()=z"* ) Res{E'(x)-(l—zle“)l}
e

(130)

But how to find a system z transform if the pure time delay is not an integer

multiple of the sampling period? For example the system

-1.2s
€

E()= S+1

sampled atarate T=0.0137

[ properties |
Linearity
z{a-e(kT)+b- f(kT)} =a-E(z)+b-F(2), Va,b
Time Shift
z{e(KT —nT)-u(kT —nT)} =z"-E(z)
Final Value Theorem
lime(KT) = lim(z - 1)E(2)

In order to analyze such systems it's necessary to have the z transform of the
time delay function. As we have seen earlier, the starred transform of a signal

e(t), is the Laplace transform of the product of this signal by a periodic

sequence of pulses of period T,
E'(s)= ﬁ(e(t) (- kT)j
k=0

The signal pure time delay refers to a displacement in the growing sense of the

time axis. Thus, shifting the signal e(t) of a fractional amount of the sampling

period, say AT with
AT =(1-m)T with 0<m<1

the previous expression takes the following form:

E*(s)=£(E(t—(l—m)T)-§5(t—kT)] (131)
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Note that sampling is not delayed, only the signal. Now, since the function is
dependent on an additional parameter (m), the previous equation is rewritten

as:

E*(s,m):E(e(t—(l—m)T)-iéS(t—kT)j

Since the starred transform is identical to the z transform with z=¢*" then

E(zm=E'(s,m)| _, = L’(e(t —(1-m)T)- ia(t - kT)j

Z:esT

or,

k=0

E(z,m):ﬁ(e(t—T +mT)-§5(t—kT)j

Pure-time delays, integer multiples of the sampling period, can be factored

back, the previous expression is replaced by the following one,

k=0

E(z,m)= e‘STﬁ(e(tJr mT)-iS(t—kT)j

that is,

E(z,m)= z‘lﬁ(e(t+mT)-§8(t—kT)] (132)

Z:eST

It is known that the Laplace transform of the product of two variables in time is

given by the complex convolution integral.

[ note ]

If x(t)élX(s) and y(t)é]Y(s) then x(t)-y(t)i%cTwX(k)-Y(s—x)dx

o— joo

This integral can be solved using a theorem derived from complex analysis: the

residual method (the same method used to derive equations (124) and (127)).

[ note ]
L L

If x(t)z= X(s) and y(t)2Y(s) then
o !

O+ joo

c[x(t)-y(t)]=2Lch [ XQ)-Ys-ndr= 3 Res{X()Y(s-1)}
SR
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Thus, considering that e(t) has Laplace transform E(s), and the pulse

sequence has Laplace transform equal to:

9+

A(S) = E{i d(t— kT)} JZS('{ KT)-e*'dt = Ze’SkT (Unilateral) (133)

0 k=0

Since A(s) is a geometric series with ratio e than,

1

A(s) e (134)

[ note ] Summing the terms in a geometric progression:

Zb:r" ré —rb*

=a

Thus, and given the residue theorem, expression (132) is replaced by the

following one:

Ezm=2"| Y Res{e™EM)-AGs-2)} (135)
nos polos
de E() T

Substituting A(s—A) by expression (134), evaluated s=s-A, the above
equality is replaced by,

. m 1
Eem=z"| Y Res{ e" " E(M)- ﬂ} (136)
SSSEFE?J)OS z=e""
i.e.
-1 mTA ;
E(Z’m) = nos%losRes{e E(k) 1- ZileT}\ } (137)

de E(1)

Which is the more effective form to compute the modified transformed z from

the Laplace transform of a signal or system.

An alternative way of establishing the modified z transform is verifying, from

expression (130), that
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E*(s,m)=£[e(t—(l—m)T)~§6(t—kT)]=L‘,[ie(t—(l—m)T)-S(t—kT)j

Given the definition of discrete-time impulse, the previous equation takes the

following form:

E'(s,m)= L‘(ie(kT —(l—m)T)-S(t—kT)j = f:e(kT —(1-m)T)-e™*"

For k=0 then E’(s,m)=L{e(-(1-mT)3(t)}. As (1-m)T is always positive
vme[0,1] then —(1-m)T concerns a negative value. Additionally, since e(t) =0

for t <0 the previous relationship is replaced by the following one,
E'(s,m)=> ekT —(1-m)T)-e™"
k=1

which leads to the alternative modified z transform formulation:

+00

E(z,m)=>e(kT —(1-m)T)-z™* (138)

k=1

This parameterization provides an alternative to expression (136) and may be

useful in cases where the signal comes in time-series format.

Finally, in order to illustrate the modified ztransform conversion, consider the
following example where you one want to obtain the modified z transform for

the following system,

-1.2s
€

s+1

E(s)=

sampled at arate T =0.013. This system can be rewritten as

e—T(k+A)s e—T(k+1—m)s
E(s)= = , Yk e Z" ¥me[0,1]
s+1 S+1

Due to this fact we obtain that

=|2]-92
T

Note, once again, that u refers to the floor rounding operator. Using the

computed k one find the value of A as follows:
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1.2—KkT

A= ~0.308

which leads to that
m=1-A=0.692

Then, the E(s) modified z transform is:

—(k+D)Ts  omTs mTA
Eem=2"'2 | &% |-7%Res{S . 1_1 _ o 0P
S+1 A+l 1-z7e" ), _ z2-0.987
[ suggestion | Perform the same procedure, but this time with T =0.2

Comparing the expressions (127) and (137), one can say that, for the case of
systems with pure delays integer multiples of the sampling period, both
transforms are related by the following equality:

E(Z):LILI})ZE(Z,m) (139)
Additionally, and just like in the ordinary z transform, pure time-delays integer

multiples of the sampling period can be factored,

Z,(e"E(s)) =272, (E(5)) (140)

Please note that the z transform tables cannot be applied directly to his
modified version. Therefore new tables must be derived (usually by the
expression (137)). Annex A4 gives some transform pairs for the most common

signals or systems.
2.2.4 Inverse Z transform and difference equations

Typically, a digital controller is conceptually, a set of equations that operate in a
time-domain sampled signal (usually the error). In this curricular unit, one must
think that those equations are implemented and solved by digital

MIiCroprocessors.

Just like some analog controller design techniques, the design of digital
controllers is made using the frequency domain representation of the open-loop
system. One start from the system Laplace transform and try to obtain the
controller transfer function (in the z domain) in order the closed-loop system to

cope with the defined performance criteria.
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As already mentioned, typically the implementation of the controller is in the
time domain then, in order to physically implement the control law in the
microprocessor based system, there’s a need to convert the frequency domain
controller transfer function to the digital time domain. This procedure is

performed through the inverse z transform operation.

Formally, the inverse z transform is described mathematically by:

e[k]=2+cjg5CE(z)zk“dz (141)

where the contour integral is taken counter-clockwise in the convergence region

containing the origin of E(z).

There are several techniques for obtaining the inverse z transform from a
discrete-time transfer function. Most of them bypasses the computation of the
contour integral solution by using tables and, if necessary, a pre-arrangement of
the original function by splitting up or taking rational expansions [10] [13]. An
alternative strategy is based on the evaluation of the contour integral using the

Cauchy residue theorem. Thus, the inverse transform of E(z) can be obtained

given the following relation [13]:

elk]= > Res{E(z)-z*"| 142)

E(z)z"!

Note that, unlike the equation {126}, residues are taken to the poles of E(z)z*".
Thus, if k <0 it's necessary to evaluate, besides the poles of E(z), the residues

of k+1 poles at the origin. However, since this course interest lies only in
causal systems, the equation (142) is evaluated only for k>0. Note that for

k =0 it is necessary to calculate the residue at z=0.

Just like in the starred transform, the residue assessment depends on the poles
multiplicity.
= |f the system has a simple pole at z=a,

Res{E(2)2"'| =(z ~)E()2""|

Z=a

= |If the system has a multiple pole at z=a multiplicity m,

Res{E@2"), = [dml [(z—a)”“E(z)z“]]

=2 (m-1)!| dz™"

Z=a
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In the normal context of control engineering, the discrete transfer function is
usually a ratio of polynomials in z with the generic form:

Y(z) b,z"+b, 2"+ +b,
U(z) 2z"+a, 2" +-+3,

G(2)= (143)
As seen above, to ensure causality it is necessary that the denominator
polynomial degree is equal or greater than the numerator polynomial degree.

Re-arranging the above expression one obtain:

(1+ a, z "+ t+az” )Y(z) = (bmzrH +b, 2" " 4+ byz" )U (2) (144)

Applying the inverse transform (see [properties] pg. 88) we may write:

Y[k]"'anfly[k_1]+"'+aoy[k_n]:

b ulk —m+n]+b, Uk —m+n+1]+---+bulk —n] (145)

Such equation types are called difference equations and they are what actually

define the control rules implemented in digital microprocessors.

[ note ] In the difference equation y[k] refers, in fact, to y(kT). The notation

presented is based on the precedent introduced by Oppenheim and
Schaffer (1998) and aims to be a more compact, and less ambiguous,

way to represent discrete sequences. So one can say that:

yik]= y(kT) = y(O)|_,,

[ note ]

In many control systems publications it's possible to detect an alternative
difference equations presentation. This alternative is based on the definition of a
time shift operator. This shift may be in order to advance time (forward shift
operator) or to time delay (backward shift operator). The shift operator is

denoted by the letter g and, when applied to a function in time, performs the
following operation:

- q-e(kT)=e(kT +T)=¢e[k +1] (time advance)

- q ' -e(kT) =e(kT =T) =e[k —1] (time delay)

In a general way,

- 0" -e(kT)=e(kT + pT)=¢e[k+p], VpeZ
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For example, consider the following transfer function:

Y(z) b,z"+b, 2" +-+b, B(2)

= — = , VnmeZ,n>m,
U(2) Z'+a 7" +---+a, A(2)

Dividing both terms by z" and considering that the excess of poles over zeros is
d =n—m one gets:

Y(z) z""+b, 2"+ bz z%4b, 2 4 +bz T BY(2)

U(z) 1+a, 2" '+---+az" l+a 2z +-+az2z"  A'(2)

where A’(z) and B'(z) refer to the reciprocal polynomials. Factoring z™*, and

taking the inverse z transform, the differences equation can be written as:
A'(q)y(KT)=B"(q Hu(kT —dT)

Note that z=(q since the former is a complex variable and the second is an

operator. However, to some extent, one can say that

q°-e(kT)= 2" (z°E(2)) if e(kT)<—;l> E(z)

2.3 Mapping the s into the z plane

As we have just seen, there is a close relation between the complex variable z
and the complex variable s. The link between both variables was defined in

section §2.2.2 as:

z=¢e (146)

In a conventional linear and time invariant analog system, the transfer function
becomes a ratio of polynomials in s. The location, in the s plane, of the poles
and zeros defines the system dynamic behaviour. In the same fashion, discrete-
time systems can also be described by a ratio of polynomials in z. Also the
values of z that make the function equal to zero are called the transfer function
zeros. In the same way, the values of z that make the transmission infinite are
called the transfer function poles. Like its continuous-time counterpart, the
dynamic behaviour of a discrete system is also closely linked to the poles and

zeros location on a map called the z plane.

Being z a complex variable makes sense that the z plane, like the s plane, is
the Argand plane for complex numbers. Moreover, given the existence of a

relationship between the complex variables s and z seems obvious that there
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also a relationship between both plans. Indeed it is. During this section will
observe how the plane s is transformed into the plane z from the relationship
(146).
As already said, the variable s being complex, has both real and imaginary
parts described generically by:

S=0+ jo (147)
Given the equation (146) it's possible to state that

7 e(c+jm)T _ ecT 'eju)T (148)

The z module and phase are e’ and e/’ respectively. Additionally, since the
complex exponential is a periodic function with period 2k=n,Vk € Z , the following

relationship holds true,

j m+2—nk

7= @77 — g -eJT( ™) e e/ vk ez (149)
From this expression one concludes that the s plane singularities, for
frequencies integer multiples of the sampling frequency ®,, are mapped to the

same location in the z plane.

Now let’'s analyse what happens, in the z domain, for different values of s. If
s=0 then,

z=e" =1

We conclude that, in the discrete plane, a singularity at s=0 is translated to
z=1. In general, taking into consideration expression (147), any singularity

located at:
s=0+j3$5=0+jm%,VkeZ
will have its position exactly at z=1.

Now we relax thes complex variable imaginary value and force the real part to

be zero. This situation is equivalent to evaluate the s map along the jo axis. In

this case, equation (148) is reduced to,

z=e"" (150)

By varying the analog frequency o from —®,/2 to®,/2 one observe that z

describes, in the Argand plane, a circumference with unity radius. This result
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allows us to conclude that the Laplace’s jo axis is mapped, on the z plane,

into a unit radius circle.

[ suggestion]  Run the following code in MATLAB® and try to see what is

going on for alpha values outside the specified range. (Note
that if o =aw,/2 with a e[-1,1] then z=¢'")

»alpha =- 1:0.01:1;

»Z = exp (J * pi * alpha);

»plot (real (2), imag (2))
»axis square

Now one assume the real part of the variable s is positive. That is Re{s} >0.

This constraint defines, for the s plane, only the right hand half-plane limited, at

left, by the jo axis. This situation leads to |z|>1 and hence z=|z|-e*" regards

all the space outwards the unity radius circle. Thus, poles or zeros located in
the right hand half-plane on the s plane are mapped, in the zplane, into the

space region outside the unity circle.

The last situation concerns the location of continuous-time singularities located

at the left-hand half-plane. All s points, forced to obey at Re{s}<0, are

mapped, in the z domain, into the unity circle interior region. For this reason, to
be stable, all the causal discrete-time system poles must lye inside the unity
circle. The following figure illustrates graphically all the cases considered in the

previous paragraphs.

& Im{s} A Im{z}

Fig 36. Mapping the s into the z plane: (a) the imaginary axis is transformed into a
unit radius circle (b) the left half-plane is converted inside the unit circle (c)
the right half-plane becomes the plane bounded below by the circle (d)
singularities at the origin are now at the point z=1.
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A final remark concerns the fact that, in sampled system, the Laplace transform
lead to an infinite number of poles. This would not be representable in the plane
s however, in the plane z, all the secondary stripes are mapped into the same
spatial location as the primary stripe. For this reason only a finite nhumber of

poles are represented in z.
2.3.1 Discrete-time system frequency response

The frequency response, in an analog system, is obtained through the system
behaviour to pure frequency excitation signals within a given frequency range. If
a mathematical model of the system is available, this evaluation can be made

from the Laplace transform evaluated at s= jo.

The same concept can be extrapolated to systems expressed in z. Indeed,
since,

z=¢"
evaluating the frequency response for a discrete system is equivalent to
evaluate the complex variable z for the cases in which s= jo,Vwo. Thatis,
z=el"

Thus, a discrete-time system with transfer function G(z) has frequency
response G(e"" ).
As mentioned in section § 2.1.1, and can also be observed by equation (93), the

product of frequency ® by the sampling period T result in a quantity

designated by digital frequency o, . Thus, the frequency response is,

G(e")=G(z)

‘Z‘:l and g =0T
for a frequency range within the interval [O,n]. Additionally, since for sigma

equal to zero the module of z is equal to unity, the evaluation of frequency

response is made over the unit radius circumference.

[ note] In the case discrete system has Fourier transform, then the z

transform is equivalent to the Fourier transform when |z|:1,. That is

when z=¢' if |z|=1.
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[ note ] For a system, or discrete sequence, to admit Fourier transform it is

necessary that the z transform convergence region includes the unit

circle. The convergence region is the set of all z values that makes the
transform convergent. The convergence region describes regions
bounded by origin concentric circles. For cases where the systems is
expressed by ratio of polynomials in z, the convergence region never
includes the poles. Additionally, for causal systems, the convergence

region is always bounded below by a circle.

2.3.1.1 Frequency response geometric evaluation

Consider the figure 37 where, in the z plane, a generic point z=e' is

represented. Graphically one observes that, at frequency o, =0, z refers to the
point (1, jO). Increasing the frequency the point moves counterclockwise around
the unit circle. At the frequency o, == (i.e. for ® equal to half the sampling
frequency) z refers to the point (—l,jO). Now for m, =2n the point z located
again at (l,jO). This situation is repeated at integer multiples of 2rn. This

phenomenon is, of course, a sampling consequence.

i Imiz)

B

1
o =05 +2kT (k=0,1,2,.)

ma 1

®=",37,51, — e =0,27,47,

Re(z)

Fig 37. Evaluation of the geometric location of a point z = glos according to the
digital frequency.

Due to the relationship between both the z and Fourier transforms, from the
pole-zero map is possible to evaluate the magnitude and phase of the Fourier
transform. So, consider a linear, time-invariant discrete-time system

represented by a transfer function parameterized as follows,
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ﬁ(z_wi)

G(z)=——,VnmeZen>m

H(z—pi)

Since (z—p,) and (z—w;) are vectors in the z plane, the Fourier transform can
be evaluated as follows:

= The magnitude of the Fourier transform is equal to the product of the
magnitude of all the zero vectors divided by the product of the magnitude

of all pole vectors:

= The phase is equal to the sum of the phases of all zero vectors minus the
sum of the phases of all pole vectors pole (note: the angles are taken in

reference to the positive real axis).

%6(e™) = 3 x(e™ -w)-3 #(e™ —p)
i=1 i=1
i Imiz)

1

W
c
®5 1
~ h
0.5 Re(z)

Fig 38. Vectors pole and zero for a generic frequency ,

Consider, as an example, the following causal system defined in z by;

_z-05
z+0.5

G(2)

This transfer function has a zero at z=0.5 and a pole at z=-0.5. For a general

frequency o, we can plot the pole and zero vectors illustrated in Figure 38:
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For concrete values of o, (measured in rad / sample) one have obtained the

results presented in table 4:

oY I | <P W) «xGEe™)
0 1.5 0.5 0 0 1/3 0

n/2  Js/2 52 11071 2.0345 1 0.9274
T 0.5 1.5 T T 3 0

Tabela 4. Evaluation of the system response G (z) for some frequency values

Assessing for a wider set of values, one obtains the Fourier transform module
and phase profile illustrated in figure 39.

Before to end this subject the following considerations are presented:

The poles, when placed near the unit circle, produce well-defined peaks

in the response at the corresponding angular frequency.

Zeros on the unit circle have the effect of producing a null response for

the corresponding angular frequency.

0 0.5 1 15 2 25 3
1
0.8
=
B0
-
'E‘m
60.4
v
0.2
0 | 1 1 | |
0 05 9 15 2 25 3
wd}rad

Fig 39. Frequency response for the system G (z).

2.3.1.2 Discrete-time system stability

In the first chapter it was seen that for a linear, time invariant and causal system
to be stable it was necessary that the all poles possess negative real part. In the

case of discrete systems is easy to see that the stability condition requires all
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the poles to be inside the unit circle.

This can be illustrated by considering the following example: Consider two
causal first-order discrete-time systems with poles at z=0.9 and z=1.02:
1

G(2)=—

(2) 7-0.9
1

G,(2)=

(2) 7-1.02

It is easy to see that, geometrically, the first pole is inside the unit circle and the
second is outside. Applying the inverse z transform one obtains the following

impulse responses:
h[k]=(0.9)" u[k]

h,[k]=(1.02)u[k]

Figure 40 presents the graphical aspect, of both expressions, for the first thirty

samples.

2

1.8F
- hyln]

1.6 o hol] |
144
1.2F

1
0.8F
06k
0.4F

o] 5 10 15 20 25 a0

amostra

Fig 40. Impulse response system G,(z) and G,(z)

As one might suspect, the impulse response h,[k] is not absolutely summable.
The n terms sum of h,[k] lead to a geometric series with ratio greater than one

and then divergent. Thus, poles whose magnitude is less than one, contribute to

the transient response with terms that decay to zero over time. In other way,

102 jpcoelho@ipb.pt



DIGITAL CONTROL

poles with higher than unity modules, lead to transient terms that exponentially

increase in time.

What if, in the above problem, the poles had negative values? In stability terms
nothing changes. Just the time response shape is changed. So consider the
impulse response of the two previous systems but now with poles at z=-0.9
and z=-1.02:

h[k]=(~0.9)" u[k]

h,[k]=(-1.02)u[k]

The impulse response behaviour, for the first thirty samples, concerning both

systems is illustrated at figure 41.

Comparing the previous with figure 40 one concludes that both systems tend to
the same values. However, the way they do it is different. In this second case
the system appears to show oscillation like an under-damped system. In fact,
this phenomenon could be anticipated since the impulse responses of both

systems have a term of type (-1)* which is alternately positive or negative

depending on the exponent parity. So, unlike analog systems, discrete systems
with only one pole can oscillate. Due to this fact, poles with negative real part

are given the name "ringing poles".

o hyln]
haln] |

] i
0 5 10 15 20 25 30
amostra

Fig 41. Impulse response for discrete-time systems with negative poles.
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2.3.2 Continuous Transfer Functions Discretization

The whole theory derived so far, to discrete-time signals, was based on the
concept shown in Figure 17. That is, a discrete-time signal is a sequence of
amplitude values of a continuous-time signal taken regularly at specified time
intervals. Thus, the discrete sequence can be viewed as a weighted sum of
discrete impulses displaced in time. The Laplace transform of this sequence,

and subsequent change of variable, led to the concept of the z transform:

+00

L(e(KT))=E"(s)=E(2)| .« =D ekT)-z“=Z(E(s)) (151)
k=0
What would happen if the sequence e(kT) was obtained, by sampling
the response of an analog system, to a given excitation signal? What
is the relationship between the analog system transfer function and

the sequence’s z transform?

To answer these questions consider the following figure:

U(s) E(s) © E's)

— G(s)

Fig 42. Transfer function of a system with sampler

The physical system transfer function that originates from a given excitation
signal u(t), the signal e(t) is:

E®) _ _G(s).
0Gs) =G(s)= E(s)=G(s)-U(s)

On the other hand, the output signal starred transform is
E"(s)=[E(9)] =[G(s)-U(s)]
and for z=¢"",

E(2)= Z[E(s)]= Z[G(5)-U(s)] (152)

However, the transfer function G(z) is defined as,

E(z
G(Z)=ﬁ (153)

where
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U(z)= Z[U(9)]

Replacing (152) and (153) one obtains the relationship between the z
transform and its Laplace transform:

Z[G(s)-U(9)]

cO=""00 (154)

Thus, contrary to what might be assumed, G(z) = Z[G(s)]. In fact, what the

previous expression tells us is that the analog system z transform depends on
the excitation signal. However the transfer function should be independent of
the input signal profile. Indeed it is so, but with this strategy what one is trying to
map into z is not the system dynamics but its time response. It’s intended to
find a z function for the system from the input/output continuous signals
observations in discrete instants (similar to system identification procedures).

The G(z) transfer function serves the specific objective to preserve the

input/output relationship of the analog system (at least in the sampling instants).

[ note ]

Note that Z[G(s)-U(s)] is, in general, different from G(z)-U(z). In fact,

considering, for example,

G(s)=U(s) :é we obtain

G(2)=U(2) :i then,

Z2

COND

However,

Z[G(s)-U(s)]:Z[SLZ}:T :

7 -27+1
Thus, for this particular example, the z transform of the product is only equal to

the product of the z transform if the sampling period is unity.

For example, for the particular case of an impulse input, the equation (154)

takes the following form:
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G(2)= Z[G(s)] (155)
This mean that the z transform of the Laplace transform of an analog system
only preserves the impulse response. In fact observe figure 43 which shows the
response of,

1 Z
G(s)=—— and G(2)= , 1=02
(s) ol (2) o (156)

to two separate signals: an impulse and a unit step.

If the objective was to ensure accuracy of the step response samples the z

transform should be:

G(Z):M=(1—Z_I)Z[G(S)-S_l] _

2[s"]

The result is further illustrated in figure 44.

-T

= (157)

l1-e
z-e

Looking closely at the equation (157) one observes that the z transform of the

system G(s) is taken as if the system was cascaded to a zero-order hold.

— G(s) |
08 | 0 Gz) ||
@D
EO'G_
£
E Q4+
<
02
0 1 =BG ——E—E—8—0
0 1 2 3 4 5 6
tempols
6 :
— G(s) 0000000 QO00QO0OO0YQ
5-!06{2) 00900000255;} R Sy
00? 2 =4 382
o4 oo':
3 e
£3r
-£2—Q§:
19 i
0 J = FrlE = i i ISl A I
0 1 2 3 4 5 [
tempols

Fig 43. Impulse response and step response of an analog system and its z model
taken from Z[G(s)]. Note the impulse response samples adjustment accuracy

at the sampling instants. Compare now with the step response (figure below).

The effect of continuous-time transfer function discretization can also be seen in

the frequency domain. Thus consider the Bode plot illustrated in figure 45.

As you would suspect, the discrete-time system frequency response (measured
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to the Nyquist frequency) does not exactly match with the continuous-time
system frequency. Depending on the excitation signal to preserve, one obtains

different transfer functions and then, several frequency response profiles.

| —G(s)
ook O G|

0.7
06+

05F

Amplitude

0.4

02r-

e

tempols

Fig 44. Step response of the system of equation {157}

Phase (deg); Magnitude (dB)

To: Y(1)

200 i i £ Ak i i P Easa

Frequency (rad/sec)

Fig 45. Frequency response for three different cases: the analog system,
transformed into their discrete system z obtained from the z transformed into
the cascade system and zero-order.

An alternative way to discretize the continuous-time transfer function, besides

the one from the input/output signals observation, result from a direct
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transformation using some s—z mapping law. Please note that the

relationship between the two variables has been already established as:

_asT

z=¢ (158)
that is.
s=Lin(2)
= (159)

However this transformation law is not desirable since it converts a ratio of
polynomials in s into a sum ratio of nonlinear functions in z. Thus, several

methods have been proposed in order to circumvent this problem [7].

The diversity of existing methods is an indicator of the ineptitude of one of them
meets all the requirements for a mapping strategy. As we will see, each method
has advantages and disadvantages that should be considered for the controller

discretization.
2.3.2.1 Euler forward and backward

As already noted, the direct application of the transformation (159) is not
feasible as it transforms a linear rational fraction s in a fraction of non-linear in
z. In order to avoid this problem, one option is to approximate (159) into a
polynomial in z. The simplest method of doing this is to expand it in Taylor
series around z=1 (because we want a good match of both functions at low
frequencies). In this context, the expression (159) is replaced by the following
equality,

1

s=—In(z) :

+ —
T

1

RTINS I C2a Vi
Z:l(z 1) = +

T (160)

2-1 2=
The logarithmic function admits an infinite number of derivatives, so the
previous expression should be truncated at some point. One strategy is to
neglect all terms of order greater than one. Therefore, the above expression is
reduced to,

s:%m&)

1
+_
T

(=D (161)

z=1 z=

which leads to the following relationship between s and z,

z-1
S:? (162)
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What this approach means in reality and how far it is valid?

To answer the first part of the question considers a continuous-time system
governed by the following differential equation:

d
Xd(tX) =y® (163)

with zero initial conditions. Applying the Laplace transform one obtains:
SX(s)=Y(S) (164)
where X(s)=L{x(t)} and Y(s)=L{y(t)}. Discretizing the system using the

relationship (162) one gets,

(z-1)
TX(Z)=Y(Z) (165)

Now, applying the inverse transform yields the following difference equation,

k+1]—x[k
X[ +_I! X[ ]:y[k] (166)

Comparing the expression {163} with the last one, we conclude that the
approximation {162} t in the frequency domain is equivalent to approximate the

first derivative to a first difference. In other words, the derivative is taken as the
difference between the signal samples of x(t) at t=(k+1)T and t=KkT divided
by the sampling period (note the non-causal expression of (166)). Because the

calculation of this derivative approach requires a signal sample value ahead of

the present moment this method is often called "Euler Forward".

The second part of the previously raised question concerns the approximation
quality of (162). Remember that this mapping strategy was obtained by

polynomial expansion around the lower frequencies.

Let us first examine how, using the Euler forward discretization technique, the s
plane is mapped into the z plane. Thus, solving the expression (162) in order to

z we obtain
z=sST +1 (167)
Since s=o+ jo one gets,

z=(oT+1)+ joT (168)
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For =0 the pure imaginary axis is mapped, at z domain, into a vertical line
passing through point z =1. On the other hand, the Laplace left hand half-plane,
is transformed into a half-plane to the left of z=1. For analog poles located on
the right half-plane one found that, in the digital domain, these poles are
transformed into poles at the right hand of the vertical line that passes through

the point z=1. The figure 46 seeks to illustrate these considerations.

We then concludes that:

= The left half-plane in s is not mapped within a circle of unit radius in the

plane z (although this includes it);

= Stable analog systems can provide unstable digital ones. In fact,
depending on the sampling period, poles in the left half-plane in s can be

transformed in poles outside the unit circle in z.

= The frequency outline of the z plane does not follow the circumference
of unit radius. Instead follow a vertical line that passes the point z=1
(Note, however, that around this point, the frequency response is very

close as forced by the performed Taylor expansion).
A Im{s} A Im{z}

 EEEE TR W v |---X

Fig 46. Planar mapping s to plane z transformation using the "Forward Euler".

Resulting from these conclusions we can say that, unless high sampling
frequencies are used, this mapping is undesirable. An alternative has to do with
how the derivative is calculated numerically. Instead of using the present and
next sample value one can use the present and the previous sample. The

following relation reflects this strategy:
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k]—x[k—1

This derivative numerical method approximation is designated by "Euler

Backward."

The mapping carried out by this technique follows the law:

1=z z-1
T 4

S

(Note the pole at the origin to delay the signal) (170)

To analyze how the s plane is mapped into the z plane the above expression
is solved in order to z resulting in,

1
TieT (171)

Since s=o+ jo one get,

1

S (172)
For c=0,
oL _1(=jeT)+(+joT) 1f| 1ejeT) 1 1 7
- joT 2 1- joT 2l 1-joT ) 2 2 (173)
where
p=tan" (0T )+tan™ (0T )=2-tan"' (T ) (174)

In expression (173), the complex exponential impress, in the z plane, a circle of
radius 1/2 and the "offset" shifts the circle centre, along the positive real axis,
by an amount equal to 1/2. It is easy to verify that the stability region of the

Laplace plane is transformed within this circle, and therefore, the right half-

plane of the s map becomes the entire plane outside the same circle.

As done previously for the "Euler Forward" method, figure 47 presents a picture
that geometrically illustrates the relationship between plans s and z for the

"Euler Backward" method. By observation of the this figure one concludes that:

= As in the previous case, the left half-plane in s is not mapped exactly

inside a unit radius circle in the z plane;

= It is possible to stabilize unstable analog systems after the discretization

process.
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= The frequency outline of the z plane also does not follow the unit radius
circumference. Moreover, there is a degradation of the sampling

frequency for points away from z=1.

A Im{s} A Im{zZ}
W--mmmmmm ®
\
1 +1
1
1
1
1
\
i .lf x
T =~ x +1 o
: ey Refs) Re{z}
:
1
: -1
1
R -

Fig 47. Mapping s planeto z plane using the " Euler Backward."

To conclude, let the say that often one want, after the analog transfer function
discretization process, to maintain the original frequency response. Thus,
although the two techniques presented are easily applied, they do not preserve
the impulse response and severely distort the frequency response (at least for

relatively low sampling frequencies or digital frequencies away from o, =0).

Thus, in the following section, an alternative technique is presented. This new
mapping strategy is also derived from a polynomial approximation of expression

(162). But now with the advantage of mapping, the s plane jo axis, into the

unit radius circle interior at the z plane.
2.3.2.2 Bilinear or "Tustin" transformation.

The most common form of analog transfer functions discretization is by direct
replacement of complex variable s by a first order Padé approximation, around
z=1, of expression (162). This technique is called bilinear or Tustin

transformation.

With the results obtained in section § 2.1.4.3 (equation (119)) it is possible to
extrapolate to the case in which one intends to approximate the equation (162)
by a ratio of two polynomials. Therefore, solving in order to s, it's easy to verify

that the relationship between the complex variables s and z is;
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=T (175)

[ note] The above expression could also be obtained by applying the

trapezoidal approximation’s numerical integration method [4] [13].

S o7 (176)

given that s=c+ jo,

_(2+0T)+ joT
(2-0T)- joT (177)

Evaluating the previous expression along the jo axis,

Z_2+jcoT
T 2- joT (178)

That, in polar form, has the following aspect:

z=e" where o, =2-tan™' (%) (179)

Graphically the previous equation represents in the complex plane, a circle with
unity radius. Moreover, if <0, is easy to see that the numerator modulus of
expression (177) is lower than the denominator modulus which leads to an
approximation modulus less than one. Thus, the entire left half-plane of the
Laplace domain is transformed into the interior of the unit radius circle.
Similarly, for o >0, this mapping strategy results in the conversion of the right
half-plane into the outer circumference of unity radius. Thus a stable analog
system has, as its discrete equivalent, a stable filter. However this
transformation leads to a problem of frequency slide, i.e. the relationship
between analog frequency and digital frequency is not linear. More specifically
the relationship is,
2 0y
w=?tan(7] (180)
This last expression establishes the association between the s plane frequency

and the z plane digital frequency.
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[ proof ]
Starting from

21—z

R and evaluating z on the unit circle, i.e. z=¢e"", one get
+1

_El_e—jmT
T1+e o7

jo which, after factorization, becomes:

T .
T jos  —joo

T oT
2] sin()
JOJ:E =£j—2=£jt (ﬂj
22
2

[ alternative proof |

From expression (179) and solving in order to .

This frequency distortion tends to be negligible for higher sampling frequencies.
In fact, observe figure 48. As one can see, by selecting a sufficiently high
sampling frequency, the effect of distortion is minimized. Specifically, for
sampling frequencies greater than twenty times the system bandwidth, the

distortion is kept below 1%
2.3.2.3 Pole-Zero mapping

Another method for converting a transfer function, from the Laplace domain into

the z domain, is based on the relationship between plans s and z_ That is a

pole or zero at s=a is converted into a pole or zero at z=¢*" . Thus, knowing
the analog transfer function singularities location, it's possible to establish a

discrete transfer function whose poles and zeros are the poles and zeros of the
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original transfer function transformed by the relationship (162). This technique is

easy to apply and the algebraic manipulation can be summarized in the three
following points:

= Begin by mapping out all the finite poles and zeros in accordance to the

relationship z=¢"".

= If the numerator order is less than the denominator (which happens
often) add zeros in z=-1 until both terms have the same degree [6].

With the introduction of these "artificial" zeros at the Nyquist frequency
the digital system frequency response at o — w,2"' is similar to the
analog at ® — «

» Finally set up the DC gain so that both transfer functions have the same

value.
4 .
— Bilinear :
3 === Transformada Z |
@ "
7
o]
§2
i)
&
=
N
0 | | | | | | | | |
0 0.05 0.1 015 02 0.25 0.3 0.35 0.4 0.45 05
Frequéncia Normalizada (W/Wo)
40 ; ; . : 1
30 : e
o o 0.6
R R
520 s
T o4
- 0.2
0 : i i ; 0 i ; ; A
0.1 0.2 0.3 0.4 05 001 002 003 004 005 006
Frequéncia Normalizada (W/Wo) Frequéncia Normalizada (w/wo)

Fig 48. Frequency distortion due to bilinear transformation. Below right, the
graphic detail of the relative error.

To illustrate the procedure consider the following case:

S+1

G(s)=——
®) s* +2s8* +2s

Factoring the transfer function:
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G(s) = S+1 _ s+1
s(sz+2s+2) s(s+1+j)(s+1-])

Converting finite poles and zeros (assuming a unit sampling period) one

obtains:

6(2) = z—¢” _ z—¢”
(z-¢’)(z—e™)(z-e™) (z2-1)(2"—2¢" cos(l)-z+e7)

Introducing two more zeros in Z=-1
(2 +2z+1)(z—e")

G(z)=
@) (z-1)(2* —2¢" cos(1)- z+e7?)

Finally, adjusting the gain so that sG(s)|_, =(z—1)G(z)|,, =0.5 becomes,

(Z+2z+1)(z-€") 0.1467' +0.2382" +0.0392-0.054

G(z)=0.146
@ (z-1)(2"-2¢" cos(l)-z+e7) 2’ ~1.3982° +0.5332-0.135

If G(z) was the transfer function of a digital controller, the difference equation
that would be implemented in a digital processor is obtained by:

~U(z) 0.146+0.238z2"' +0.039z % —0.054z"
E(2) 1-1.398z7"' +0.533z° -0.1352"°

G(2)

and applying the inverse transform of z one get:
ufk]=1.398u[k —1]-0.533u[k —2]+0.135u[k — 3]+
+0.146€e[k]+0.238e[k —1]+0.039¢[k — 2] —0.054¢e[k — 3]

where u[k] refers to the control signal applied to the process at time t =kT and
e[k] the error signal obtained at time t=KkT . As you may suspect there is a

slight problem here. The control signal applied at the instant k depends on the
error signal also at the same instant. This would be irrelevant if the "hardware"
process inputs, outputs and perform the calculations in zero time. However this
is impossible. Thus, in order to account for the delay introduced by the system,
one considers that, during a sampling instant, the machine should have enough
time to perform all necessary operations. For example if a control variable is
sampled every second, then the hardware have, theoretically, a second to carry

out all the data transmission and processing operations.

Thus, in order to analyse the controller performance obtained by analog
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controller discretization, the effect of computer time delay must be taken into
consideration. Thus, a slight change to the previously presented discretization
technique is presented. This modification refers specifically in adding fictitious
zeros to the transfer function. In order to maintain one sample delay between
input and output, the relative degree of the transfer function must be one. That
is for strictly proper systems, zeros at z=1 will be added until the denominator
degree exceed, by one, the numerator degree [6]. In the case of proper
systems, such as lead and lag controllers, the numerator degree is identical to
the denominator. In this case it's not possible to add zeros. Additionally it seems
even to be an extra zero. This problem is solved by adding a delay to the
transfer function by introducing a pole. The pole should be added in order to
have, as little as possible, influence into the system dynamic response. On the
s plane that location would be s=—-w. The z plane equivalent location is,

obviously, z=0.
2.4 Sample Period Choice

The sampling frequency choice is not a trivial task. However, when the
sampling theorem was derived, things seemed simple: one choose a sampling
frequency that is greater than twice the maximum frequency component in the
signal. However, a closer look reveals that things are not so obvious. First one

need to know the signal maximum frequency component. How to do it?

One possibility could be carried out using a microprocessor and running the
FFT on the signal. However this alternative is flawed because, to be
implemented, the signal must already be sampled. On the other hand, and
unlike the examples shown, the spectrum of a real signal never ends abruptly at
a given frequency. Typically, the actual spectra extend from minus infinity to
plus infinity. Some of these components can be part of the observable
phenomenon but, most is due to noise that overlaps the signal of interest. Noise
can arise in various parts of the spectrum and can be due to several
phenomena including thermal agitation, magnetic induction, etc. Thus, there is
some impossibility of knowing exactly what the upper limit of the signal is.

Moreover, there will always be sidebands overlap.
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[ note] The FFT can be used to verify the existence of aliasing. If, after
computing the FFT, there are frequency components with significant
energy very close to the Nyquist frequency then there is a strong

possibility that aliasing has occurred.

As already said, the choice of the sampling period is critical in digital control.
The design of digital controllers by emulation start from the analog controller
transfer function and is discretized using one of the technique already reviewed.
Since the digital controller quality of approximation, regarding the analog
controller, increases with increasing sampling frequency is clear that the
sampling period influences the performance of the controller such as:

= Set-point tracking;

= Load disturbance rejection and measurement noise;

= Sensitivity to non-modeled dynamics.

If, by one hand, it is desirable to have a high sampling frequency on the other
this value should be limited to the minimum necessary to carry out the
numerical calculations. In fact, the algorithm computational load along with
processor performance sets up the upper limit of the sampling period. Taking
into consideration that the "hardware" has the capacity to meet any demand
imposed by the system, some guidelines have been proposed, more or less

empirical, for the choice of the sampling period.

It is often recommended in literature, a sampling period between one tenth to
one fourth of the system rise time. That is,

Tq T
BERSE SPRT:Y
0" (181)

The same is to say that the sampling period should be chosen so that [1]:

E <T < ﬁ
(Dncl O‘)ncl (182)
where o, refers to the natural frequency of the dominant closed loop poles.

Another rule of thumb, used frequently in digital signal processing, states that
the sampling frequency should be five times higher than the highest frequency

component where one wants to have identical analog and digital filter features.
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That is:
®, > S'OJH (183)

For example, for a low pass filter, o,, can be equal to five times the bandwidth.

This implies that the digital filter will behave in a similar fashion to the analog
one until around twenty-five times the bandwidth. Thus, a conservative rule
states that the sampling frequency should have a minimum of 20 times the

closed-loop bandwidth and a maximum of 40 times the same bandwidth,

20'BWC| SO)O S4O'BWC| (184)

On the other hand, as we saw in the section concerning signal reconstruction, a
D/A converter is often put between the controller and the continuous system.
This retention implies, as has been seen, that the control signal is delayed an
amount approximately equal to half the sampling period. As expected, this delay
affects the phase margin and then the system stability. Thus, a rule for choosing
the sampling period indicates that the deterioration of stability, by the zero-
order, holder is small and tolerable if the time delay is less than a tenth of the

rise time. That is,

<R T<- R (Compare to (181)) (18%5)

The relationship between the zero-order hold phase margin degradation and the
sampling period can be analyzed by an alternative approach. As already be

seen, the dynamics of a ZOH can be approximated by:

T

T _ ol
Gzoh(s)z-r.e 2sfj?wGZOh(JO‘))zT'e J ? (186)

Assuming that the phase margin degradation imposed by this element must be

contained between 5° and 10° that is,

T T T
5°x—< .. —<10°x——
180 * 2 180 (187)
which implies that
27 27
5°x% <T <10°x
180- @, 180- @, (188)
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By considering the gain crossover frequency (in open loop) equal to the system

bandwidth one gets that the phase margin decrease, due to the zero-order hold,

is limited by:
T T< 21
18-BW, 18-BW,, (189)
leading to:
18-BW, <, <36-BW, (Compare to (184)) (190)

2.5 Digital Control Systems Analysis

Effectively this section deals with hybrid systems:, systems composed of both
discrete and continuous-time components. One will show the closed loop
transfer function for some of the most common feedback control topologies.
Finally section § 2.5.3 presents two algebraic techniques to analyze the system

stability in the z domain.
2.5.1 Open-loop sampled systems

Usually, in digital control systems co-exist, simultaneously, continuous and
discrete transfer functions. The way to handle this situation is based on the
introduction of "dummy" samplers for the variables of interest. That is, despite

continuous in time, one considers their values only at discrete time instants [10].
In this section we present four different cases of open-loop hybrid systems.

CASE I:  Open-loop sampled system.

T
E(s) « EYs) Y(s)
—/ — " G(s) [T "

Fig 49. Simple system sampled in open loop. Note that the sampler output is
fictitious and is in phase with the sampler with physical existence.

Observation of the previous figure leads to the following variables relationship:

Y(5)=G(s)-E(s) (191)
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This system z analysis starts from the fictitious sampling of Y(s) (Shown

dashed in above figure). Thus, applying the starred transform to equation (191)

one gets:

Y'(9)=[G(s)-E'(9)] (192)

In this context one could of * as a kind of sampling operator. After this
"operator" all the already sampled variables can be factored out of the
operation. This is because the synchronized sampling of an sampled signal is
the same sampled signal. Thus, the previous expression takes the following

form:

Y'(s)=G'(s)-E"(s) (193)

Due to the relationship between the starred and z transform, the previous

equation can be rewritten as:

Y(2)=G(2)-E(2)|,_« (194)

CASE II: Elements separated by ideal samplers.

E(s) ¢ E¥(s) D(s) ¢ _Dffs) | Y(s)

Fig 50. Cascade of two systems separated by ideal samplers. It is considered that
all samplers are in phase.

In this case,

Y($)=G,(s)-D'(s) (195)
and

D(s)=G,(s)-E'(5) (196)

Applying the star operator to both terms becomes,

D*(s) =G, (s)-E(5) (197)

Replacing the previous result on expression (195) and applying the star one

www.ipb.pt/~jpcoelho/download.htm 121



DIGITAL CONTROL

gets:
Y'(5)=G;(s)-G(5)-E'(5) (198)

In other words

Y(2)=G(2)-G,(2)-E(2) (199)

CASE lll: Cascaded elements not separated by samplers.

E(s) fT E¥(s) D(s) Y(s)

Fig 51. Cascade elements not separated by ideal samplers

This third case are similar to the previous one but without the sampler between

G,(s) and G,(s). The analysis to the above system leads to:

Y(s)=G,(s)-D(s) (200)
and

D(s)=G,(s)-E"(s) (201)

Replacing (201) into (200) one obtains:
Y(s) =G,(s)-G,(5)-E(s) (202)

Applying the star is transformed into

Y'(5)=[G,(5)-G,(5)-E'(9)] (203)
which leads to:
Y'(8)=E’(5):[G,(5)-G,(5)] =E'(5)-G,G,(5) (204)

where GzGl(s)* regards the starred transform of the product between G, (s) and

G,(s).

Often common sense misleads us. From the expression (203) one may be

tempted to say that
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Y'(5)=E’(5):[G,(5)-G(9)] =E’(5)-G;(5)-G/(5) (205)
But that’s wrong. This is because, as already seen, in general

Z{G,(9)}- Z{G,(9)} # Z{G,(5)-G,(s)} (206)
That is,

G, (5)-G;(s) % GG, (5) (207)

Case IV: Cascaded elements separated by samplers and excited by

continuous signals.

E(s)

Dis),¢ Dfs) Y(s)

Gy(s)

Fig 52. Cascade elements excited by continuous signal in time.

From the previous figure the following expression is derived:

Y(s)=G,(s)-D'(s) (208)
and

D(s)=G;(s)-E(s) (209)

Applying the starred transform to the previous equation one gets,

D'(s) =G,E(s) (210)
Substituting the last result in (208) lead to,
Y(s)=G,(s)-G,E(s) (211)

Finally, applying the starred transform to (211):

Y'(5)=G;(5)-GE(S) (212)

Since, usually, GIE(s)* cannot be factored in G (s)-E'(s) the system of figure

52 does not admit representation in transfer function format.

From the analysis of these four cases there are three important concepts to

remember:
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» The sampling of a sampled signal results in the sampled signal:
[E'(9)] =E"(5) (213)

= Normally the sampling of the product of two signals is different from the

product of the sampled signals,
[E(5)-E,(5)] =E,E;(5) = E(5) () (214)

= It is not possible to derive a transfer function if the signals applied

upstream to continuous systems are not previously sampled [13].
2.5.2 Closed-loop sampled systems

Finding the transfer function for sampled systems is not a trivial task since there
is no transfer function for the ideal sampler [13]. This statement is even more
pronounced when it comes to closed loop sampled systems. Depending on the
operations sequence, it is possible to reach a point where input/output variables
factorization is not possible implying the impossibility of obtaining a system
transfer function. To illustrate this situation consider the following closed-loop

control system:

H(s) [

- T
R E : * Y
*ﬂ,@ (s) E's), &o - Js}

+

Fig 53. Feedback system with an ideal sampler in the loop

From the block diagram one can write:

Y(s)=G(s)-E'(s) (215)
and
E(s)=R(s)—H(s)-Y(s) (216)

Replacing (216) in (215) by first applying the starred transform to E(s) one
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obtain:

Y(5)=G($)R(5)~G(s)- HY (5) (217)
By applying the starred transform to Y(s) leads to,

Y'(5)=G (9)R'(5)-G'(5)- HY(5) (218)
Since % can’t be factored, the previous expression cannot be solved for

Y"(s) and, therefore, it's not possible to compute the transfer function.

On the other hand, rewriting the equation (216) as,

E(s)=R(s)~H(s)-G(s)-E'(5) (219)
and taking the starred transform one obtain,
E'(s)=R'(5)-HG(s) -E'(5) (220)

This leads to,

. R'(s)
E' () =——
1+ HG(s) (221)
replacing E"(s) is in (215),
R'(s)
Y(8)=G(s) —
1+ HG(s) (222)
Now applying the starred transformed to (222)
. . R'(s)
Y (S) = G (S) S —
1+ HG(s) (223)
i.e.
_ __R(@
Y@=6@- HG(2) (224)

We conclude by saying that there is a need for special care in handling variable

and the starred transform application sequence.

Thus, in order to make easy the analysis of such systems, the following
algorithm is presented [13]:

Step 1 of 3:  Represent all the samplers input by a variable name;

Step 2 of 3:  Write these variables as a function of each sampler output;

Step 3 0of 3:  Apply the starred transform.
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2.5.3 Algebraic techniques for stability analysis

As referred in section § 2.3.1.2, a discrete system, causal, linear and time-
invariant is stable if all the characteristic equation roots have a module less than
unity. That is the discrete system poles should be located inside the unit radius
circumference. However, such an analysis involves the calculation of all system
modes which may be irrelevant or difficult to deal. Of course, this statement

considers the treatment of a problem in algebraic rather than numerical form.

This section presents two algebraic techniques to analyze the stability of
discrete-time systems. Both techniques have in common that they do not

require explicit calculation of the system poles.
2.5.3.1 Routh-Hurwitz criterion for discrete-time systems

It is known that in a continuous-time LTI system, the stability limit is the
imaginary axis while in a discrete system the stability bound is a geometric unit
radius circle. Thus, stability analysis techniques used for continuous systems
cannot be applied directly to discrete systems. However this problem can be
circumvented by transforming the discrete system into a continuous one using,
for example, the (inverse) bilinear transformation.

2+Ts
7 Ts (225)

With this strategy the unit circle of the plane z is transformed into the jo axis.

Hence the stability bound becomes the same as the analog system. For this
reason it's now possible to use continuous-time stability analysis techniques.
Among the universe of existing techniques, in this curricular unit, one focus on
the Routh-Hurwitz criterion. The application of the Routh criterion for a discrete
system is done by following the steps:

Step 1 of 3:  Determine the closed-loop system transfer function;

Step 2 of 3:  Apply the transformation expressed in equation (225);

Step 3 of 3:  Apply the Routh criterion following the same procedure than

for continuous systems (see text box in section § 1.2.5.1).

As for the continuous case, the Routh criterion can be used to determine the

discrete system critical gain. That is the gain for which the roots cross the
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imaginary axis. This value of gain is the gain to which the system is marginally
stable and hence can be used to determine the critical frequency. However, for
discrete systems, the critical frequency found using the previous algorithm has
to be transformed in order to find the exact discrete-time system critical

frequency. This transformation is performed using the relationship,

®, =2-tan”’ [T %) (226)
2.5.3.2 Jury’s Criterion

As seen in the previous section, stability analysis of discrete systems can be
performed using an adaptation of the classical Routh criterion. However the
application of this technique requires the transformation of z to s which may
lead to a lot of algebra manipulation. An alternative stability analysis technique,

which can be used directly in discrete-time systems, is the Jury stability test.
Thus, consider a discrete system characteristic equation with the form:
Q(z)=a,z"+a,, 2" +-+28,=0 ,8,>0 (227)

The Jury table is formed by using the polynomial Q(z) as follows:

0 1 2 n-1 n

z z z z z
a0 a1 a2 an—l a‘n
a &, A, Ch Ch)
bo bl bz t bn—l (228)
bn—l bn—Z bn—3 bO
CO Cl Cn—z
where
bk — aO an—k ,Ck — bO bn—k—l and dk — CO Cn—k—2 (229)
a, @& b., b C., GC

Note that the number of Jury’s table rows is equal to 2(n—1)—1. The necessary

and sufficient conditions for discrete system stability are:
Q>0
(=D"Q(-1)>0
la,|<a,
B> [o,. | (230)

€| > [coa|
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The Jury criterion can be applied as follows:
Step 1 of 2:  Check the first three conditions of (230). If any is violated
stop the process and conclude that the system is unstable.
Otherwise go to the next item
Step 2 of 2:  Construct the Jury table checking, as each row is being
calculated, the remaining conditions. If any of them is

violated conclude that the system is unstable.
2.6 Digital Control Design

While it is possible to design a digital control system in discrete-time domain,
one of the most common techniques begins by design an analog controller in
the continuous-time domain: a strategy called "design by emulation". In this
technique, one starts to design an analog controller transfer function in order to
meet the proposed performance criteria. Then, from the obtained continuous-
time transfer function, and using a discretization techniques, one obtain the
discrete-time equivalent controller and, at the end, the difference equation

governing the filter behaviour.

Although, for a good performance of this technique, the system should be over-
sampled, this design technique is very appealing since one can use the
knowledge of continuous-time controller design. Note however that the digital
control systems design has additional considerations such as sampling effects,
quantization and reconstruction. Due to this phenomena influence the system
closed-loop dynamic behaviour of the emulated discrete controller should not
coincide exactly with the one anticipated for the analog control system.
However, for fast sampling and low quantization errors, the behaviour is very

similar.

As already said, this section presents a digital controller design technique
based on the digitization of continuous controllers. In a first phase we analyze
the effect, of the sampled system elements, on the control loop. More
specifically we are talking about zero-order holders, anti-aliasing filters and
quantizers. Later a concrete example will be used to present the basic controller

“design by emulation” steps.
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2.6.1 Zero-order hold system impact

In section § 2.1.4.3 it was noted that a zero-order had, as a side effect, the
system phase margin deterioration due to the time-delay introduced. As has
been demonstrated, the time-delay value was in the vicinity of half the sampling
period. This section steps forward in order to analyze the effect, on a control
loop, of the zero-order holder. For this consider the analog system of the figure

below:

R(s) E U(s) Y(s)
—:@ﬂv Kis) ——— G(s) >

Fig 54. Analog control system in closed loop.

where

Y(s) __K(5)G(s)

Ca )= R s) T 1+ K(5)G(s) (231)

refers to its closed-loop transfer function.

Imagine now that the analog compensator, for example a phase advance
controller, for various reasons should be replaced by an identical control
strategy but embedded in a microcontroller. Thus, the "equivalent" scheme,

from the digital system point-of-view, has the following aspect:

C M U Y(s)
Rﬂh E(z) K@) (2) 1T (s) GGs) .

+

—
&

Fig 55. "Equivalent" digital control system of the previous figure.

Its closed-loop transfer function is:

Y(2) _ K(2)GGy, (5)
R(Z) 1+K(2)GG,, (s)

G, ()= (232)
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where G, (s) refers to the zero-order hold transfer function.

Consider that the analog controller transfer function K(s) was discretized using

the appropriate technique so that the discretization influence in the closed-loop
dynamics is negligible. Having said that, one begins by analyzing the system

unit-step response represented in figure 56.

— Analégico
— Digital

Amplitude

Tempo /s

Fig 56. Step responses of both an analog controller and his digital equivalent.

As can be seen, not only an overshoot increase is observed, but also the
settling time increases (remember that both performance criteria are related to
zeta). Since one ensures that the controller digitalization effect is negligible, the
difference between the analog and digital transient response can only be due to
the zero-order hold influence. In fact, the increased instability observed is due to

a phase margin reduction as shown in Figure 57.

In numerical terms, the phase decay felt was approximately equal to:

o= m% (Radians)

O=gc

Resulting from this phase reduction one would expect an overshoot increase
which, in fact, was felt (look again at figure 56). In addition, and taking into
consideration all the study carried out on the zero-order hold dynamics, one

knows that the phase margin deterioration will decrease with increasing
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sampling frequency. For that, and other reasons already discussed, the
sampling period is a parameter with great impact on the digital control systems

performance.

Magnitude/dB

Fn:,-c|uénc:ia;’rau:|.s.'1

-100
% -150
®
& =200
-250
=300
=350

Frequtérw::iau’racl.s'1

Fig 57. Frequency response comparison between an analog system and its
digitized version (by the method of the step response invariance).

Concluding, the zero-order hold has a slightly destabilizing effect that can be
overlooked or, alternatively, included in the design process. As a rule, and due
to sampling frequencies generally involved, one expects phase margin

decreases of less than 10°.
2.6.2 Effect of Anti-Aliasing Filter

We have already mentioned that a real-world signal is not "well-behaved"
having frequency components that, theoretically, would extend to infinity. Thus,
results from the sampling process, one would always expect some aliasing

signal distortion.

One way to minimize this phenomenon requires the use of a pre-filter at
sampler upstream. This filter will attenuate the energy of frequency components
outside the interest band. Within a wide filter range type usually, and in order to
minimize the system dynamics disturbance, the choice is a single pole filter with

transfer function:
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G(s)=

(233)
('00

In order to analyze the filter introduction effect on the control loop consider
again the control system of the previous section but now with a first-order pre-

filter placed before the sampler. Figure 58 show the required configuration.

R E M(z) 1 Uls) Yis)
ﬂ;(:}—-»m Kz) [ L& [ G(s)

s

T

N

Gf(s} S 1

Fig 58. Introduction of an anti-aliasing filter in the loop control.
The transfer function of this new closed-loop system has the following form,

6. (1) YD __ K@CCy ()
RO T 14K (766,60 (5) 239

Consider now the system open-loop frequency of the above configuration and
compare it to the ones illustrated at figures 54 and 55.

T T T T 1117 T T T T TTTT7T T T T T TTTTT T
e o lgle o - e mdooolo oL R A SN JRY R R TR DO R N S -

— Analdgico T i
...... —— Digital sem Pré-Filtro
—— Digital corm Pré-Filtro

Magnitude/dB

Freguénciafrad.s™1

MO
T
[ S B ooeeeodoo-iobotaiiisl = Analdgico b
11| — Digital sem Pré-Filtra | B e AP LEREEEEEERES
RT3 T I R S R A Binvae : |, — Digital com Pré-Filtrn || 2 ——__i‘b____
N 1 h Th - — A

Ty A A N S = : : T
o P P : IR P ) SEETEEEEEEEEEEPEPEREREEERY

300 f-- - -4 R R R RESEEEET A PEt R o

Frequénciafrad.s™1 V

Fig 59. Frequency response of open loop, analog and digital systems (with and
without pre-filter)

In terms of magnitude, only a small discrepancy is observed very close to the
Nyquist frequency. In terms of phase, there is a phase margin decrease due to

the additional delay introduced by the pole. Regarding the analog system, the
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phase margin deterioration occurs by an amount ¢ which can be determined

T o
— +tan”'| 2—
2 0=0, COO
gc O=0g;

The phase margin deterioration due to the filter can also be attested by an

by:

=0 T Pfityre =@ (Radians)

increase of step response overshoot (compared to the system without pre-filter).

The figure below illustrates this fact.

— Sem Fré-Fillra |
= Comn Pré-Flliro

Amplitude

Time (sec.)

Fig 60. Step response of digital control systems with and without pre-filter.

The analysis shows that, concerning the behaviour with and without filter, the
difference in dynamics is almost negligible. To be conservative one can take the
pre-filter effect in the controller design by increasing the required phase margin.
Due to the sampling period usually involved, the phase margin is deteriorated

by an amount less than 6°.

Additionally it is worth reiterating that, in the digital control context, the anti-
aliasing filter serves a very important purpose: to prevent the introduction of
low-frequency disturbances in the control signal. To illustrate this phenomenon
consider again the same control system with and without pre-filter. Also
consider, for each of the two cases, the introduction of monochrome
measurement error with signal-to-noise ratio of about 6dB and frequency
slightly greater than twice the sampling frequency. This simulation strategy is

characterized by figures 61 and 62.
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For each case, the transfer functions Y (z) over N(z), is established. For the

system represented in Figure 61,

GG,, (K(2N(2)
Y@ =-———= (235)
1+GG,,, (S)K(2)
And for the system represented in figure 62 the transfer function is:
GG, (s)-K(2)G,N (s)
Y(@)=-—" : (236)

1+GGszoh*(S)K(Z)

R(z) E(z) M(z) ———U(s) Y(s)
—:@—0 K(z) > 1;e T G(s) >

Ee— 1

' TN{S}

Fig 61. System measurement error contamination without pre-filter.

R(z) E(z) M(z) | Uls) V()
_:( : - K(z) > 1;e T G(s) >

S G [T 1 [

" TN{S}

Fig 62. System measurement error contamination with pre-filter.

Just because N(z) cannot be factored in this last expression, does not mean

that the simulation cannot be performed [we recommend an analysis to the
script associated with Figure 63 available on-line in a zip file]. The simulation

results can be summarized by the step response illustrated in figure 63.

As expected the low-pass system behaviour was able to minimize the effect, on
the output, of the measurement error. However, due to the aliasing
phenomenon, this high-frequency noise becomes bandpass noise. Therefore
the system fails to eliminate the measurement noise effect. For the digital

system without pre-filter, the effect of measurement error at the output is very
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clear. On the other hand, the introduction of a system pre-filter resulted in

attenuation (by a factor of 5) of the measurement error.

01 T T T T T T

0.05
@
3 0
=
E -0.05 -
=T = Sem Pré-Filtro
= Com Pré-Filtro
-01 — Analégico
-0.15 I ! ! ! 1 ! 1
0 5 10 15 20 25 30 35 40
Tempols

0.02

0.01

Amplitude

-0.01

-0.02 1
[Sem Pré-Filtrol [Com Pré-Filtro

-0.15 -0.03 -15
0 20 40 0 20 40 0 20 40
Tempols Tempols Tempols

Fig 63. Response of analog and digital systems, with and without pre-filter, to
out-of-band measurement noise.

2.6.3 Design by Emulation

This last section presents a full design-by-emulation strategy for digital
controllers. The used technique requires the knowledge described in the first
chapter. This is so because the first step of this procedure begins by designing
an analog controller. This controller will force, some continuous-time process, to

meet, in closed-loop, some proposed performance criteria.

The design-by-emulation procedure can be summarized by the following four

steps:

Step 1 of 4: Derive the analog controller

Step 2 of 4: Choosing the sample period and add the elements
associated with digital control systems.

Step 3 of 4: Discretize the control law

Step 4 of 4: Performance evaluation by simulation.

From the first step one can foreseen two different situations. One where the
analog control system already exists and the aim is to convert it into digital. The
second alternative admits that there is no controller and one must be designed

from scratch.
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The second step involves the addition, to the analogue system, of the dynamics
associated with the elements that surround a digital control strategy. More
specifically we talk about the A/D converter (modelled by an ideal sampler), the
D/A converter (usually a ZOH) and the anti-aliasing filter. Please note that the
additional dynamics effect introduced by the holder and filter can be considered
in the first step. That is the phase margin deterioration by these elements can
be taken into consideration during the analog controller design phase.
Additionally, an appropriate sampling frequency must be selected. Usually this
frequency selection is based on the closed-loop bandwidth or the step

response.

Finally, after controller discretization, the sampled system performance should
be evaluated. This assessment must be carried out given the control system
relative stability as well as transient and steady-state responses. After ending
the design iterative process, the controller transfer function must be converted
into a difference equation for embed in a digital system processor. This last step
may require the controller parameters round-off effect due to processor finite
precision. There are some difference equation implementation strategies that try

to minimize this effect [9] [13].

In order to illustrate the above discussed design procedure, the project-by-
emulation of a digital controller, is presented. So, consider a open-loop system
with the following transfer function:

76

G(s)= m (237)

The performance criteria to be met are:

o e <10%;

e BWe[l,2]radls ;

o P, x45°.
We begin the design procedure by first showing, in figure 64, the open-loop
system Bode plot. The gain crossover frequency is approximately equal to 3.5

rad / s and phase margin is around 7°. As The phase margin is very low and the

closed-loop bandwidth is too high (empirically 2w, ). These considerations

suggest the use of phase lag compensator.

136 jpcoelho@ipb.pt



DIGITAL CONTROL

Phase (deg); Magnitude (dB)

= = =2 =} z 8 o =2
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i
/ / =
o

Frequency (rad/sec)
Fig 64. Open-loop system frequency response.

From the steady-state error one verify that the controller gain should obey the

following restriction:

<0.1=K>1.07

€ = 1+K(76)9) (238)

Let’s consider K =2. In addition, and because we want a bandwidth between 1
and 2 rad / s, say 1.5 rad / s, and given the already stated rule of thumb (see
equation (50)), the controller should make the gain crossover frequency to be

o, =0.75 rad/s . The figure below shows the frequency response of the system

in series with the gain.

50

Phase (deq); Magnitude (dB)

=

Frequency (rad/sec)

Fig 65. Frequency response of KG(s)

At frequency o=w, one verify that the gain is equal to 22dB and the phase
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equal to 65 degrees. Thus it is necessary to reduce the gain, at 0.75 rad/s
frequency, of 22dB. Since you cannot change the DC gain, the desired
frequency attenuation will be handled by a pole. It is known that an attenuation
imposed by a pole is approximately equal to 20 dB per decade starting from the
pole’s frequency. So in this case, the pole should be placed a decade before of

the frequency of interest. More specifically at,

-1
®, =0, ( (1022/20)2 _1) ~0.06 (239)

For this case, the new open-loop frequency response is presented below in

figure 66.

Phase (deg); Magnitude {dB)

0 10

Frequency (rad/sec)

Fig 66. Frequency response of KG(s)/(m;‘sH)

Now remains to increase the phase margin from 29.5 degrees to 45 degrees.
However, since the controller is digital, to this value the effect of the ZOH and
anti-aliasing filter will be added. Considering a sampling frequency of thirty
times the closed-loop system bandwidth, closed-loop system, that is
®, =30x1.5=45rad/s then,

180° 0.75
=¢ . +d, =075 +tan'| 2— = |=3°42°=5°
d) d)zoh ¢f||'[|’0 45 ( 45 j

Thus, the phase lead is no longer 15.4° but rises to 20.4°. The phase lead is
obtained by adding a zero to the system. If, at crossover frequency, the phase

must increases 20.4 ° is necessary to set a zero at:

S X))
" tan (20.4°) (240)
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It is expected, due to the zero insertion, a gain crossover frequency increase.
However, given that the phase lead required is less than 45°, the magnitude
drift will not be very significant (certainly less than 3dB!). More specifically it is
expected an increase in the magnitude of the frequency response of a factor

equal to

2
®c _
20log,, [2,82] +1|~0.6 dB= A=1.06 (241)

Since the DC gain criterion was slightly over-sized, you can reduce it to 94% of
its value, ie K =2/1.06=1.87 leading to the final controller transfer function:

0.4975+1
K(s)=1.874222/5%1
®) 16.95 +1 (242)

The new open-loop frequency response has now the following profile:

Gm=15.769 dB (at 2.2458 rad/sec), Pm=50 deq. (at 0.75 rad/sec)

Phase (deg); Magnitude (dB)

Frequency (rad/sec)

Fig 67. Frequency response of open loop end

Below, in figure 68, the closed loop step response is represented and, at figure

69, the closed loop frequency response (for unity feedback) is drawn.

As one can see, both steady-state error and phase margin criteria have been
met. Additionally, from the figure 69, one can also conclude that the closed-loop

system bandwidth is between the desired limits.

The next step is to discretize the controller transfer function followed by a full
closed-loop system simulation. The controller discretization is typically

performed by using the bilinear transform or backward Euler's method. In this
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case one choose the Tustin method and neglecting the “warping” phenomenon
(we have seen that for the chosen sampling frequency, this phenomenon is

limited to 1%). From the discretization process follows that:

0.0626—-0.047-2"'

K(z)= 243
1-0.992.z"" ( )
1.2 T T
|
LI R R R 1I-----JI ---------------------4: ------- System: Gol_s-
Ce TN s — - = — - — o= o IC i 0941
T T TTre T T —— - T T
ol N N B :
- | |
- — ]
= = | , |
2 “O0Bp---ofeee-- IREEREE LT T -
E e | |
| , | ,
T Y s ULy SRRy RPN -
| , | ,
L |
ozff P P .
L |
a | ; | ;
0 3 10

Time (sec.)

Fig 1. Closed-loop step response.
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Fig 2. Closed-loop frequency response.
Considering the effect of ZOH and anti-aliasing filter (the process in series with

the zero-order is discretized using the z transform) we obtain the following

results illustrated by figures 70, 71 and 72.
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Fig 3. Digital control system closed-loop step response.

Gm=11.927 dB (at 1.77 /sec), Pm=45164 deg. (at 0.749 rad/sec)
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Fig 4. Digital control system open-loop frequency response.
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Fig 5. Digital control closed-loop frequency response.

www.ipb.pt/~jpcoelho/download.htm 141



DIGITAL CONTROL

We conclude therefore that, at least in simulation, all the design constraints
were met. The next step refers to difference equation implementation and

subsequent analysis of the controller performance "hardware-in-the-loop".
2.6.3.1 Digital processor effect

In the example shown the delay introduced by the processor was not
considered. That is, it was assumed that the processor takes zero time to
perform the I/O operations and algebraic calculation. However, in reality, this is
not the case. Thus, depending on the delay effect, this new variable may, or

may not, be taken into account in the design phase.

The following equation illustrates exactly what was just said. If the transfer
function (243) was implemented in a digital processor, the difference equation
that should be embedded possess the following structure:

u[k]=10.992-u[k —1]+0.0626-e[k]—0.047 -e[k —1] (244)

As can be seen, the calculation of the present output control signal requires the
present value of the error. In terms of actual implementation this will mean that
the present value of the error signal would approximate the value of the error
signal obtained after a sampling instant. This effect would be more evident as
the sampling period gets smaller. Obviously this approach could have

devastating effects on the behaviour of the closed-loop system.

In order to circumvent this problem, the analog controller is designed by taking
into account the time delay due to information processing. In the case of the
example reviewed above, this delay is reflected in a deterioration of the phase

margin equal to:

~Og T ~ 67 (245)

In this context, a new controller is designed resulting in the following transfer

function:

0.07731-27'-0.06257-2
1-0.9918-z7"

K(2)= (246)

Comparing this last expression with equation (243) one observe the appearing

of a pole at the origin. This pole is responsible for the delay of a sample of the
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input signal.

In order to analyze the performance of this new control system, subsequently a
set of images are presented in order to show the relative stability of both (243)
and (246) controllers regarding the processing delay. Additionally the new

controller open-loop and closed-loop Bode diagrams are presented.

AT Lo
= Controlador #1
| — Contreldor #2 |

Fig 6. Unit step response of the system (including the processing delay) using
the controller defined in equation {243} (Controller # 1) and the controller
using {246} (Controller # 2)

Bode Diagrams

>m=9.821 dB (at 1.629 rad/sec), Pm=45172 deg, (at 0.74898 rad/sec)

Phase (deg); Magnitude (dB)

Frequency (radfsec)

Fig 7. Frequency response for open-loop digital control system. Note the
maintenance of the gain crossover frequency and phase margin.
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Bode Diagrams

Phase (deg); Magnitude (dB)

Frequency (radfsec)

Fig 8. Frequency response in closed loop. There is a bandwidth within the limits
imposed by design criteria.

Figure 73 highlights the relative stability decrease due to the processing effect
delay. Thus, the act of neglecting this factor contributed to an increase in the
overshoot equal to 8%. Hence the inclusion, during the design process, of the
effect of all components that influence the overall dynamics, typically

contributes to a better designed controller.

[« CHAPTER 2]
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Exercises

PART I: Analysis and Design of Analog Control Systems

El: Relationship between set-point tracking and first order system pole

location.

Using MATLAB® analyze the step response of a first order system as a
function of pole location. For this you should consider the system:

G(s) = ——
s+a

for a=1{0.1,1,10,100} . What conclusions can you draw?

E2: Relationship between noise immunity and first order system pole

location.

Using MATLAB® analyze the noise immunity of a first order system as a

function of pole location. For this you should consider the system:

G(s)=——
S+a

for a={0.1,1,10,100} and a unity step contaminated with white noise. The

signal/noise ratio should be 6dB. What conclusions can you draw?

E3: Frequency response of a first order system.

Use MATLAB® to obtain the Bode plot for the system:
G(s)=——
S+a

with a=1{0.1,1,10,100} . What conclusions can you draw? What are the

values for the gain and phase margins?

E4: Effect of o to the step response of a second-order system.

Use MATLAB® to simulate the unity step response of a second order
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system:

o, +0°

S = 5o o, ) (s—o—joy )

for 6={-0.5;-1;-5} and considering ®, constant and equal to 1.

Observe what happens to the following performance criteria:

= Settling Time =  Qvershoot
= Rise Time = Peak Time
E5: Effect of m, in the step response of a second order system.

Use MATLAB® to simulate the unity step response of a second order
system:

o) +G°

SO = 5o o, ) (s—o—joy )

for o, ={O.5,l,5} and considering o constant and equal to 1. Observe

what happens to the following performance criteria:

=  Settling Time = Qvershoot
= Rise Time = Peak Time
E6: Effect of o, in the step response of a second order system.

Use MATLAB® to simulate the unity step response of a second order
system:

2
(@

G(s) = n

s°+2Lm, S+ o]

for o, = \/52,\/5,5\/5 and considering =2/2. Observe what
n o

happens to the following performance criteria:

= Settling Time = Qvershoot
= Rise Time = Peak Time
E7: Effect of ¢ in the step response of a second-order system.

Use MATLAB® to simulate the unity step response of a second order
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system:

o,
)= (s+wn ~ej9)(s+mn ~e‘je)

for 6={30,45,60}(°) and considering o, =+/2. Observe what happens

to the following performance criteria:

= Settling Time = Qvershoot

= Rise Time = Peak Time

E8: For each of the subsequent systems, and using the MATLAB®,

compare the step response of the original system with the one obtained

from the alternative system approximated by dominant pole(s).

1

a) 6= (s+0.1)(s+1)

(s+0.2)

P) = on)(s )

2810.1-(s+4)
G(s) =
° ) (s+3.8)(s+6)(s” +25+17)(s* +10s+29)

E9: open loop vs. closed loop

Consider the following transfer function of a plant whose temperature
must be regulated:

12

G(s)=
) s+0.1

COWMTROLO EM MALHA ABERTA

j;p\mzn - 12 - [ ]

=+0.1
Stept Gaind Transfer Fon2 Scopet

CONTROLD EM MALHA FECHADA

j - >{u.3 . s+0.1 > 12 Irl:l

5 =+0.1
Step Gain Transfer Fen Transfer Fon Soope
Transfer FocnZ
=
—_— ]
a2
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a) Use SIMULINK® to compute the open and closed-loop system
response to a sudden change of the reference (0°C - 100°C).

b) Simulate the response of both control systems to a step shape
disturbance load with amplitude equal to -5 ° C.

c) In the block diagram above, Transfer Fcn2 represents the transfer
function of a thermistor and its signal conditioning system. Analyze
the effect, on the system response, to a step input with amplitude
100°C, if the information provided by the sensor is contaminated with

unity variance white noise.

E10: Root-locus analog controller design.

Consider a system with the following open-loop transfer function:

G(s) = 0.8
s+1

Design a controller so that the system display, in closed loop, the

following characteristics:

a) Bandwidth of about 2 rad / s and maximum steady-state error of
around 5%.

b) Bandwidth of about 0.5 rad / s and maximum steady-state error of

around 5%.

E11: Root-locus analog controller design.

Consider the following open-loop system transfer function:

5
CO = 512 (5+3)
Using the root locus design a controller so that the system display the
following characteristics.
= Unit step error less than 0.05
= Phase Margin =45 °

= Closed-loop bandwidth approximately equal to 6 rad / s.

E12: Tuning a PID controller using the Ziegler-Nichols rules.

Consider the following open-loop system:

c®)= s(s+1)(s+3)
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Project a PID controller using the Ziegler and Nichols tuning rules.
Additionally, and using MATLAB®, analyze the response of the closed-

loop system (unity feedback) with and without compensation.

E13: Tuning a PID controller using the Ziegler-Nichols rules.

Consider the following open-loop system:

-0.1s
€

(s+1)

Project a PID controller using the Ziegler and Nichols tuning rules.

G(s) =

Additionally, and using MATLAB®, analyze the response of the closed-

loop system (unity feedback) with and without compensation.

El4: Analytic PID design.

Consider the following open-loop system:

400
)= 3051200
Design a PID controller (analytically) in order the system to display, in
closed loop, the following characteristics:
=  Error = 0.1 the unit ramp

= Overshoot = 10% and settling time = 2s.

E15: Bode plot phase lead controller design.

Consider the system:

1

G)=—"———
®) $*+0.25+0.1
Design a controller so that the system display a steady-state error less

than or equal to 1% and a phase margin of around 45 degrees.

E16: Phase lead controller design.

Design a lead controller for the system:

72

Ry

so that it displays the following characteristics.
= Error in steady state (the step) lower than or equal to 0.1

= Phase margin of 45 ° and bandwidth approximately equal to 1rad / s.
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E17: Bode plot phase lag controller design.

Design a lag compensator for the system:

10(s+5)
G(s) =
© (s+15)(s> +8s+20)

So the closed-loop system exhibits the following characteristics.
= Steady-state error less than or equal to 10%

= Qvershoot exceeding 5%

E18: Design a compensator for the following system:
G(s) __ 10
s(s+5)

So that it displays the following characteristics.
= Error in steady state (the unit ramp) less than or equal to 5%

= Phase margin of around 40 ° and bandwidth near 2rad / s

PART Il: Sampling and Reconstruction

E19: Determine E’(s) for the following signals:

a) e(t)=u(t)
b) e(t)=¢e"
c) e(t)=t

E20: Determine E’(s) for the following transfer functions:

a) E(9)=

(s+1)(s+2)
S+2
b) E(s)= 3
(s+1)s
2
o) E(s)= S°+5s+6
s(s+4)(s+5)
E21: Determine the transfer function and frequency response of an

ideal first-order-hold.
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PART Illl: Z-Transform

E22: Determine the Z transform E(z) for the following signals:
a) e(nT)=u(nT)
b) e[n]=e™

c) Time-series obtained by sampling e(t) =t every second.

E23: Determine the Z transform for the following transfer functions:
a) E(9)=———
(s+1)(s+2)
S+2
b) E(s)= 3
(s+1)s
2
o) E(s)= S"+55+6
s(s+4)(s+5)
E24. Determine the modified Z transform E(z,m) for the systems

presented in the previous exercise.

E25: Find the modified Z transform for the following transfer functions:
—0.3Ts
a) E()=—22 " 1_5s
(s+2)(s+5)
s+2 e—0A2Ts
b) E(s)z—( ) 5
(s+1)s
2e70.755
c) E(s)=—————, T =0.2s
) E®) S*+25+5
E26: Determine the discrete sequences e(kT) associated with the

following Z transforms:

z

a) E(z)=———
) E@) 72 -32+2

~3.8947
b) E(z)=——""%
) B =5 6065
c) E(z)=—2

(1)
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E27: Solve the following difference equations using Z transform

a) mlk]=e[k]—e[k —1]-m[k —1]
b) Xx[k]-3x[k —1]+2x[k —2] = e[k]
c) y[k+2]-6-y[k+1]+8y[k]=¢e[k] to y[0]=1 and y[1]=2
E28: Consider the discrete system characterized by the difference
equation:
y[k+1]=a-y[k]+b-x[k] where 0<a<1 and y[0]=0
a) Determine the impulse response and make a sketch of the result.

b) Calculate the unit step response and sketch the result.

c) Determine the static gain of the system.

E29: Consider the discrete system characterized by the following

differences equation:
y[k]= y[k —1]-0.25- y[k — 2]+ X[k —=1]+ 0.5 - x[k — 2]
Determine the transfer function Y (z)/X(z), identify the poles and zeros

and represent them in the Z plane. What can we say about system
stability?

PART IV: Open-loop discrete-time system response

E30: Prove that, for a system consisting of an ideal sampler/zero order
hold with input E(s) and output C(s), one have C(z)=G(z)E(z) where

G(s)=C(s)/E"(s).

E31: Consider a system consisting of an ideal sampler/zero order

holder in series with a process with transfer function:

G(s):L
s+1

Assuming a unit step input determines C(z) and c(kT).
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PART V: Closed-loop discrete-time systems response

E32: Determine the closed-loop transfer function of the following

system:

MOE/T—D G(s) |=—r—Cls)

L His)

E33: Consider the following closed-loop control systems. Obtain the

transfer function C(z)/R(z).

a)
D(z) Gp(s)
R(S} + E(s)
—_— =—| AJD |=» COHTROLADOR = DJA |=J» PROCESSO |——r—i (5]}
T SENSOR |+
H(s)
b)
Ris) * E(s) 1 + _Cis)
—»O —> —»O—/T—» G2(s) sy
T— His) “
E34: For the following figure compute:
+ U'(s 5T C(s)
ﬁ»oﬂ/—» Do |—| 1-¢7 || G6) |—>
T s
'T Modelo do A0 Computador Digital Maodelo do DuA
T

a) C(2)/R().
b) The response C(z) for the case where G(s)=a/s+a,e™ =0.5 and

the computer algorithm u[k]=u[k —1]+k -e[k] and r(t) =u(t) .
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PART VI. Discrete-time systems stability analysis

E35: Check for what values K is the following system is stable.

-

Ris) + sT
BO—"— 57 > e TC‘S)

Note: Consider e =0.5

a) Using the Routh-Hurwitz criterion for discrete systems.

b) Using the Jury stability criterion.
E36: Using the Jury’s criterion characterized the stability of the following
discrete system.

1
2’ -1.12"-0.12+0.2

G(2)=

PART VII: Digital Control Design

E37: Consider a process with transfer function:

1

G(S):s(sﬂ)

design a digital controller capable of implementing the transfer function:

70
O 525+

for:

a) A sampling frequency of 20Hz.
b) A sampling frequency of 40Hz.

Note: Use in both cases an approximation of Euler (forward)

c) Determine, with the MATLAB®, the system response K(s)G(s) to a

unit step and compare it with the system response when the

controller is digital.
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E38: Consider the following feedback system
N = C(s)
RIS};O 5/ by |—h| 1-¢T | g —en
T s
'I Modelodo A'D Computador Digital Modelo do DA
where
1
G(s) =
®) s’ +2s

It is intended that the unity step overshoot in less than 10%, the rise time

less than 5 seconds and the unit ramp error to lower than 2%.

a) Under these conditions determine an analog controller transfer
function in order to satisfy these requirements.

b) Determine the digital controller transfer function obtained by
emulation of the continuous controller wusing the bilinear

transformation. What sampling frequency should be used?

[« EXERCISES]
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A Appendices

Al. Laplace Transform

The Laplace transform is used to convert time domain signals and systems into
a set of equations expressed in terms of a complex variable commonly
designated by 's'. The Laplace transform can be unilateral or bilateral. The
asymmetry of the unilateral version imply system causality since, in its

specification, it's assumed that x(t)=0 for t <0.

The Laplace transform of a time signal x(t) are described mathematically by:

X (8)=L{x(t)} = T x(t)-e *dt Version (bilateral)

or

X(s)=L{x(t)} = T x(t)-e *dt (One-sided version)

0

where L{} refers to the transformation of Laplace. The complex variable s can

be decomposed into s=o+ jo where o is the real part of s and o is the

imaginary part. The set of values for s which make the integral convergent is

called the Laplace transform convergence region.

In the control systems framework, the application of the Laplace transform is
closely related to the fact that, in most cases, the physical systems dynamics
are expressed by constant coefficients ordinary differential equations. The
Laplace transform application to this equations type turns them into simple
polynomial equations. For example consider the following case:

0

y() = at

J. P. COELHO 157



DIGITAL CONTROL

The Laplace transform of this differential equation leads to:

Y(s)=L{yt)} = jdx—(tt)e-stdt

0

The antiderivative of the integral’s argument can be computed as ,

P [%e“} = P{we“}e“ — P|:P [w} .iesi|
dt dt dt | dt

=x(be ™ +s-P| x(t)e ™ ]

and so,

i: +S- T x(t)e™

0

Y(s)=x(t)e™

Since,
+o0

X (s) = j x(t)e *dt

0

then

Y (S)=sX(s)—Xx(0)

where x(0) is the initial value of x(t) at time instant t=0. If all the initial

conditions are zero then the derivative operation in the time-domain is

equivalent to multiply by s in the complex frequency domain.

One can return back to the time domain, from the Laplace domain, by using the
inverse Laplace transform. This transform is presented formally as a contour
integral over s =0+ jo with the following form:

o+ jo

X(t) = %J j X (s)-e*ds

o—jo
And often can be solved using the Cauchy’s residue theorem.

To conclude this appendix, below are presented some of the fundamental

properties of the Laplace transform.
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Linearity

If x,(t) 2 X,(s) and x,(t) 2 X,(s) then
L{X O +X, (1)} = L{X O} +L{X 1)} =X,(5)+X,(s)

Homogeneity
If x(t) = X(s) then

E{ax(t)} = aE{X(t)} =aX(S) yg
Final Value Theorem

If x(t) = X(s) then

lim (t) = lim sX (5)
Initial Value Theorem

If x(t)= X(s) then

lim (t) = lim sX (5)
Differentiation

If x(t)= X(s) then

’ {d"x(t)}zsnx (-3 5 4XO)

dt" = dt*!

Integration
If x(t)= X(s) then

0, P*[x(0
cfp - X2 2

n—k+1
k=1
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A2. Fourier Theory

The aim of the Fourier transforms is to convert a usually “complex” signal into a
set of simplest treatment signals. For this the Fourier transform uses
trigonometric functions as basis functions: the signal is decomposed in a linear
combination of sinus and co-sinus. In particular, the signal is decomposed as a
weighted sum of complex exponentials. The importance of this strategy rests on
the fact that the linear time-invariant system response to a complex exponential
signal is still a complex exponential signal with the same frequency and
probably with different amplitude and phase®. Depending on the involved signal
type (periodic, aperiodic, etc.) the representation, in terms of complex

exponentials, can take the following aspects:

= Fourier series

Any periodic signal can be written as a weighted sum of harmonically related

complex exponentials. That is a infinite periodic signal x(t) with fundamental

period T, can be written as:

X(t) = z C, -elod
k=—00

where oao:_zl_—7T refers to the fundamental angular frequency and C(k)

0

represents a weighting function computed by:
C =1 j X(t)-e et
‘ 1; T,

In other words, the Fourier series coefficients are calculated from the integral

over one period of the signal.

= Fourier transform of aperiodic signals

Aperiodic signals can also be represented as a linear combination of complex
exponentials. However, in this case, the exponentials are not harmonically

related but infinitely close in frequency ® . Thus, if x(t) is an aperiodic signal

that admits representation in the Fourier domain, the synthesis and analysis

% This property is often given the name of sinusoidal fidelity.
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equations are:
F -
x() =2 X (Jo)
F—l

X(jm)sz(t)-e‘j“"dt

x(t)=ij;X(joa)-ej°“dm

= Fourier transform of periodic signals

If x(t) is periodic with period T, then,

X(jo)= io 2nC, 3 (w—ko,)
k=—o0

where

] X
C, =— | x(t)-e *'dt
y TOTI (t)

From the previous equations one verifies the existence of a relationship
between the periodic signal Fourier transform and the series Fourier
coefficients. That is, in terms of spectral representation, the Fourier transform of
a periodic signal is always a set of impulses located at multiple harmonics of the

fundamental frequency and weighted by the factor 2nC, .

Note: For a continuous-time signal to admit Fourier representation it must cope
with the following three conditions (known as Dirichlet conditions):

- During a period or finite time interval x(t) must have a finite number of
maxima and minima.
- During a period or finite time interval x(t) must have a finite number of

discontinuities.

+00

- The signal must be absolutely integrable, i.e. I|x(t)|dt <o

—00

162 jpcoelho@ipb.pt




DIGITAL CONTROL

= Fourier transform of discrete signals

A discrete sequence x[n] has Fourier transform X (e!*) given by:

~+00

X(e*)=> x[n]-e7 "

N=—o0

if the series exists. The inverse Fourier transform of a discrete signal is:

1 f jo jon
x[n]:ﬂ.[X(eJ e "dw

= Discrete Fourier Transform (DFT)

The discrete Fourier transform of a discrete-time signal is, itself, a discrete
sequence and consists of Fourier transform samples taken at N equally spaced

points in the frequency:

N-1 J.ann

X[k]=Y'x[n]-e N ,0<k<N-1
0

>

where
1\ j2ro
xnjl=—>_X[k]-e ¥ ,0<n<N-1
N i
Note that in the case of discrete-time signals, the frequency o actually refers to

the digital frequency o, . The relationship between analog and digital frequency
is:

0y =0-T
where T refers to the sampling period. For an analog frequency equal to the
sampling frequency (inverse of the sampling period), the digital frequency is 2n

radians per sample. Moreover, it appears that the Fourier transform for discrete

signals is periodic with period 2n. In order to validate look to the following proof:

+00 +
X(ej(w+2kn)) — Z X[n]_e—J(m+2kn)n — z X[n]_e—an _e—jzknn ,Vk c7

n=-ow n=—o

as n only takes integer values then e ™" = cos(2knn) — jsin(2knmn) =1 and so,

X(ej(u)+2krc)) — Z X[n]e—jmn — X(ejw)

n=—cw0
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A3. Some Laplace Transform Pairs

Function Time Laplace Transform
et),t>0 E(s)
o(t) 1
S(t—t,) g S
u(t) 1
S
1
t &
t’ 1
2 s’
e (k=D
Sk
e—at 1
s+a
1
—at R —
te (s+a)’
g (k=1)!
(s+a)
1-e® 2
s(s+a)
1-e* a
t— 2
a s*(s+a)
2
1-(1+at)e™ a_2
s(s+a)
e—at _ e—bt L
(s+a)(s+h)
. a
sin(at
(at) s’ +a’
s
cos(at
(@) s’ +a’
l — t . 1
—e™® bt —
b sin(bt) (s+a)’ +b’
—at bt &
& cos(bt) s((s+a)2+b2)
1 e—at e—bt 1
ab a(a-b) b(b-a) s(s+a)(s+bh)
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A4, Some transform pairs Z

Z transform

Modified Z Transform

Function Time
e(t),t>0 E(2) E(z,m)
z 1
u(t — i
® — —
. Tz £+ Tz
(z—l)2 z-1 (z—l)2
2 T?z(z+1) T2 m*  2m+1 2
— 3 A + 2 + 3
2 2(2-) 221 @y ()
. ) ak,l 7 ) B ak—l e—amT
t EE% D7 da*! (z e’ j EL%(_I)k 1 da ! [ﬁ)
) Z e—amT
e z—e 7—e®
Tze Te 2" (e‘aT +m(z—e‘aT ))
. —at
t-e (Z_efaT)2 (Z_efaT)z
6k 7 ak e—amT
K -t k2 N ) |,
te” =D 6a"[z—e‘“j e aa"(z—e”j
Z(l_e—aT) 1 e—amT
1 — e
@-1(z-e") (z-1) (z-e™)
e z(z(aT ~1+e )+ (1-e —aTe ™ )) T ,amT-1 ™
R a(z-1y(z-e ") (z-1) a@-D afz-e™)

1-(1+at)e™
—bt

sin(at)

cos(at)
le’m sin(bt)
b

e ™ cos(bt)

zsin(aT)
2> —2zcos(aT)+1

z(z—-cos(aT))
7> —2zcos(aT)+1

767 sin(bT)
b ( 2> —2ze™ cos(bT)+e " )

2> — 76" cos(bT)
7> —2z7e ™ cos(bT)+e ™"

—aT

1 1+amT aTe amT
+ e

z-1 | z—e™ (z—e""‘T)z

—amT -bmT
€ €

(z-e) _(z—e’bT)

zsin(amT) +sin((1-m)aT)
7> —2zcos(aT)+1

zcos(amT ) —cos((1-m)aT)
7> —2zcos(aT)+1

e (zsin(omT)+e ™" sin((1-m)bT ))

b(z2 —-22e™* cos(bT) +e*" )

e (zcos(bmT)+e~" sin((1-m)bT))
7> =278 cos(bT)+e "
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Bode plots, 36
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Phase lag, 55

Phase Lag, 37

Phase lead, 47

Phase Lead, 37

PID, 45

PID, 37
Design

by Emulation, 130
Difference equations, 95
Digital

Closed loop, 126

Frequency, 65

Open loop, 122
Diophantine equation, 39
Dirac delta, 61
Dirichlet, 11
Dominant pole, 20
Error

Quantization, 59

Steady state, 28

Steady-state, 13
Euler

Backward, 112

Forward, 111
Euler identities, 77
Filter

Anti-aliasing, 69, 133
Frequency

gain crossover, 16

phase crossover, 16
Geometric progression, 91
Jury criterion, 129
Margin

gain, 15

phase, 15
measuring chain, 2

Overshoot, 15
Pade approximation, 81
Primary strip, 85
Property
Sifting, 62
Reconstruction, 72
Resonance peak, 15
Root locus, 36
Routh Criterion, 128
Routh stability criterion, 43
Sampling
Ideal, 60
operation, 59
Series
Taylor, 75
Signal
Quantization, 70
Stability
BIBO, 12
stable
asymptotically, 11
System
causal, 9
first order, 16
improper, 10
marginaly stable, 11
minimum phase, 12
poles, 9
proper, 10
second order, 17
stable, 11
strictly proper, 10
type, 9
zeros, 9
Theorem
Final-Value, 14
Nyquist, 65
Time
constant, 15
delay, 14
rise, 14
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settling, 14
Transfer function
Direct, 25
Transfer Function
Closed loop, 25
Open loop, 25
Transform
Bilinear, 114
Fourier, 163
Inverse Z, 94
Laplace, 159

modified Z, 92
Starred, 83
Z, 88
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asymptotically, 11
Vector
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Zero, 101
Zero order hold, 76
Ziegler and Nichols, 41

[INDEX <]

172

jpcoelho@ipb.pt



	Readme
	CD_En

