
$33/,&$7,21�6&(1$5,26�)25�',675,%87('�
0$1$*(0(17�86,1*�6103�(;35(66,216�

Rui PedroLopes ��������� 	�
� ������� ������������������� ����� 	������������� !���"�#$���� � �� ��%���� � &����� ��������'(�)	��	���*�	�"+'(�)	��	���*�	�"�%����� ���	��
��,-	� � . ��� �/������01� ��2�3 ��

José Luís Oliveira 45� �(��� 	�,-���6 �����(��� ���+ �)7��6� ��	8���������+� ������,��+�� ��	�*�9����)"(:��6� ;����<�+� ��	���������=>;���� ���+"�=?;���� ����"�%����� ���6	6�
��,-	6� � . @�� ��0A���+ 3 ��	�3 ��

Keywords: DISMAN, Expression MIB, Network Management, SNMP

Abstract: Management distribution is an, we can say, old topic in terms of the number of proposed solutions and
publications. Recently, the DISMAN workgroup suggested a set of MIB modules to address this matter in
the context of SNMP. One of the DISMAN modules has the capability of using expressions to perform
decentralized processing of management information – the Expression MIB. Although existing for some
time now, its capabilities are not very well known. In fact, other DISMAN MIBs, such as the Schedule MIB
and the Script MIB already got some attention in several papers and are target of very solid work. There are
hardly any papers describing the Expression MIB and its functionality. This paper contributes to eliminate
this absence by describing our implementation effort around it as well as some real world applications for it.

�� ,1752'8&7,21�
During the last years the SNMP management

framework has strongly guided the development of
network systems and management applications. This
architecture, regardless of some well-known
shortcomings, has managed not only to survive but
also to evolve to a rather complete set of features.
This fact, combined with its inherent simplicity and
coarse APIs availability, has pushed it into a
dominant position in today’s network management
market.

On the other hand, one of the problems
associated with SNMP is its centralized architecture,
not well suited for offline operation and not scalable
on large networks. The solution for this problem is,
according to many authors, management
distribution, a research topic since early 90’s.

The history of management distribution, well
discussed by Martin-Flatin on (Martin-Flatin, 1998),
started with initial work by Yemini HW� DO� in 1991
when features such as scalability, flexibility and
robustness where identified as necessary for future
developments on network management (Yemini,

1991). Goldszmidt and Yemini early supported a
management distribution methodology by delegating
management operations near management
information (Goldszmidt, 1998). According to this
concept, management processing functions are
dynamically delegated to the network elements and
executed locally. This introduces a shift in the
original concept where the information is
transported to a central location to be processed.
This approach is known as Management by
Delegation (MbD) and although the research
prototypes did not have the expected community
recognition they unquestionably proved the concept.

Other approaches for management distributions
suggested using mobile agents to implement and
distribute management functions. Many authors
supported several usage scenarios, platforms and
applications and enforced the concept of a
cooperative management effort on the network
(Bieszczad, 1997, Pham, 1998, Krause, 1996, Lopes,
1999).

The industry also adopted management
distribution by releasing tools, APIs or agents, such
as Sun’s JMX (Sun Microsystems) or SNMP
Research’s CIAgent (SNMP Research).

Some of these products, technology and concepts
do not easily survive the community resistance

because they are not either compatible or adapted to
the management technology of choice – the SNMP.
The SNMP community have also suggested, under
the DISMAN workgroup of the IETF (DISMAN
Charter), some tools for management distribution.

�� ',675,%87('�6103�%$6('�
0$1$*(0(17�

The typical usage scenario of the DISMAN
architecture is based on the distribution of
management tasks through a set of mid-level
managers known as Distributed Managers (DMs).
The main purpose of this approach is to reduce the
command exchange with the management station,
alleviate the processing load usually residing at a
single central point and increase the system
robustness by introducing redundancy and by
allowing offline operation.

A fundamental piece of management by
delegation is the possibility of running programs or
scripts remotely, approach implemented by the
Script MIB. Schoenwaelder, following an excellent
study of distribution models and solutions, presents
the distribution of management tasks in the context
of the Script MIB (Schoenwaelder, 1997).

Associated with the Script MIB, the IETF
Distributed Management charter suggests other
modules, namely the Schedule, Expression, Event,
Remote Operations, Notification Log, Alarm and
Alarm Reporting Control MIB modules (DISMAN
Charter). These set of MIB modules provide a rather
complete framework for distributing management
operations under the SNMP context over a hierarchy
of several DMs.

One of the best knew MIB, probably because the
early availability of implementations is the Script
MIB. In this paper, we describe our ongoing work
on another DISMAN MIB module: the Expression
MIB.

���� ([SUHVVLRQ�0,%�
We started working on the Expression MIB

implementation when the documentation was still at
the Internet draft status. It made the first appearance
on (Lopes, 2000) and since then no other
implementation has become known to the authors.
Meanwhile, some minor details have changed both
in the IETF documentation and in the
implementation code, particularly the expression
parser and the sampling mechanism. We included a
more robust expression parser and changed some
functions according to the clarifications made by the

documentation editors. We also enhanced the
sampling mechanism with remote sampling to cope
with the Event MIB requirements. This last change
was valuable for the work presented on this paper.

The MIB is divided in three main groups:
• H[S5HVRXUFH� – this group is related to resource

control, with particular incidence on sampling
parameters since this operation can have some
impact on system resources.

• H[S'HILQH – is organized in three tables which
collect information about the expression
definition and about the errors occurred while
evaluating it: a) H[S([SUHVVLRQ7DEOH, defines the
expression string, the result type as well as the
sampling period. b) H[S(UURU7DEOH maintains a
table of errors’ registers gathering information
such as: the last time an error occurred on
evaluating the expression, the operation in which
it occurred, the error type. c) H[S2EMHFW7DEOH
controls each element characteristics inside the
expression. The expression string may contain
variables and each variable may have different
sampling types and be or not wildcarded.

• H[S9DOXH – this group has a single table which
instantiates the evaluation objects. It is by
querying this table that the result from the
expression is known.
The values used in the expressions may be

absolute (the values of the MIB objects at the
sampling time), delta (the difference from one
sample value to the next) or changed (a boolean
indicating whether or not the object changed its
value since the last sample). In addition to sampling,
the MIB also defines wildcarding, allowing the use
of a single expression over multiple instances of the
same MIB object. While regular objects are resolved
by a SNMP get operation, wildcard objects are
retrieved through a get-next operation. Users are
familiar with wildcarding for referencing multiple
files (such as the UNIX command “cp foo.* /tmp”).
If there is more than one wildcard parameter in an
expression they all must have the same OID
termination (semantics) to obtain a coherent result.

An expression result is retrieved by querying a
row in the H[S9DOXH7DEOH. Each row has a single
column, formatted according to the result type of the
expression. The value is accessed by an OID
containing the OID for the data type, the expression
name and a fragment.

The expression name has the form of
x.“owner”.y.“name” converted to dot separated
integers. The integer x is the length of the owner and
y is the length of the string which identifies this
expression to the particular owner. Each word
character is converted to integer and separated from
the other integers by a dot.

�

The fragment starts with “ 0.0.” and ends with a
zero, if there is no wildcard or, otherwise, with the
instance that satisfied the wildcard.

�� 0$1$*(0(17�7$6.6�,1�$�5($/�
6&(1$5,2�

To better understand the effects of using the
Expression MIB in every day management
operations, wee used some elements and hosts of the
network installed in our workplace (Figure 1).

As a teaching institute, it has several
workstations specific for student work as well as
several hosts to provide professors with individual
working stations, both protected with different
firewalls. In this scenario, we picked up both
switches, ten workstations from the student section
and three servers. The tasks we wanted to achieve
where:

7DVN�����5DWH�RI�ORVW�IRUZDUGLQJ�GDWDEDVH�HQWULHV�
This task applies to the switches and calculates

the rate of the total number of forwarding database
entries, which have been or would have been learnt,
but have been discarded due to a lack of space to
store them. This information is stored in the
managed object GRW�G7S/HDUQHG(QWU\'LVFDUGV. If
this counter is increasing, it indicates that the
forwarding database is regularly becoming full,
which may result in unpleasant performance effects
on the network (Expression 1). The object is defined
in the Bridge MIB (Decker, 1993).

∆
∆=

in seconds ofnumber
iscardsrnedEntryDdot1dTpLea

 rate entrieslost

Expression 1: Rate of lost forwarding database entries.

To calculate the expression it is necessary to poll
the device twice, at time t1 and t2. If the rate is
higher than zero, it indicates that a problem exists
and that the user should know about it.

After having defined the expressions, it is
necessary to translate it to a form that the Expression
MIB understands. It is necessary to describe the
expressions in terms of MIB objects according to the
SNMP syntax. In this case the mapping will be:
expExpression.3."adm".4."lost" = "$1"

expExpressionValueType.3."adm".4."lost" = integer32

expExpressionDeltaInterval.3."adm".4."lost" = 5

expExpressionRowStatus.3."adm".4."lost" = ’active’

expObjectID.3."adm".4."lost".1 =

 dot1dTpLearnedEntryDiscards.0

expObjectSampleType.3."adm".4."lost".1 = ’deltaValue’

expObjectRowStatus.3."adm".4."lost".1 = ’active’

It is not necessary to normalize the expression,

i.e. divide the difference between successive
samples by the sampling interval, because the period
does not change – the x axis delta interval is always
the same. Thus, the expression is composed only of
a single parameter with delta sampling. Moreover,
there are no wildcarded objects because the
sampling object is a leaf object.

7DVN�����3HUFHQWDJH�RI�DFWLYH�SURFHVVHV�
This task is valuable in workstations to have an

idea of resource occupation. This task evaluates the
percentage of current system processes
(KU6\VWHP3URFHVVHV) to the maximum number of
processes that a system can support (Expression 2).
The objects are defined in the Host Resources MIB
(Waldbusser, 2000).

Figure 1: Sections of the local network scenario.

 100
xProcesseshrSystemMa
ocesseshrSystemPr

percentage process ×=

Expression 2: Percentage of active processes.

The correspondent Expression MIB
configuration is:
expExpression.3."adm".3."sys" = "$1/$2*100"

expExpressionValueType.3."adm".3."sys" = unsigned32

expExpressionDeltaInterval.3."adm".3."sys" = 5

expExpressionRowStatus.3."adm".3."sys" = ’active’

expObjectID.3."adm".3."sys".1 = hrSystemProcesses.0

expObjectSampleType.3."adm".3."sys".1 = ’absoluteValue’

expObjectConditional.3."adm".3."sys".1 =

 hrSystemMaxProcesses.0

expObjectRowStatus.3."adm".3."sys".1 = ’active’

expObjectID.3."adm".3."sys".2 =

 hrSystemMaxProcesses.0

expObjectSampleType.3."adm".3."sys".2 = ’absoluteValue’

expObjectRowStatus.3."adm".3."sys".2 = ’active’

The conditional object is responsible for

invalidating the expression if the
hrSystemMaxProcesses is not defined for the given
host. In this case, the expression should not be
evaluated (divide by zero). Also, by invalidating a
single parameter, the whole expression is
invalidated, so it is not necessary to set this object
for the second parameter.

7DVN�����,QWHUIDFH�XWLOL]DWLRQ�IRU�KDOI�GXSOH[�OLQNV�
Calculate the network utilization per element

(Expression 3). The best way to do this is by
measuring the interface utilization, as described in
(Leinwand, 1996) and (Cisco). The objects are
defined in the MIB-II (McCloghrie, 1991).

()
() 100

ifSpeedin seconds ofnumber
8ts

B C D�E�F D�G$F H
ifInOctets

nutilizatio Interface ×
×∆

×+∆=

Expression 3: Interface utilization for half-duplex links.

The LI,Q2FWHWV�managed object has the count of
all the octets received in a given interface;
LI2XW2FWHWV� represents the count of the transmitted
octets; LI6SHHG�has the speed of the interface in bits
per second.

If the link is full duplex, the equation evaluates
to 200%, so it is necessary to get the maximum of
the ifInOctets and ifOutOctets. However, this
approach hides the direction that has lesser value
and provides less accurate results. It is better to
calculate the interface utilization in each direction by
dividing the equation in two. For simplicity, we only
measure half-duplex links.

The translation to MIB objects for this
expression is already described in (Kavasseri, 2001),
so it is straightforward.

7DVN���±�,QWHUIDFH�DFFXUDF\�
We also decided to measure the interface traffic

that does not result in error (expressed in
percentage), also known as the interface accuracy
(Cisco). The result of Expression 4 compares errors
to total packets seen and sent and subtracts this
percentage from 100, to get the accuracy. An
accuracy of 100% implies that no errors have
occurred and an accuracy of 97% means that in
every 100 packets, 3 where lost due to errors.

100
PktsifInNUcastktsifInUcastP

s
I J K L�MON/NQP�N

-100accuracy ×
∆+∆

=

Expression 4: Interface accuracy.

LI,Q(UURUV has the count of the received octets
that resulted in error; the sum of LI,Q8FDVW3NWV� (the
number of received unicast octets) with
LI,Q18FDVW3NWV�(the number of received octets which
are not unicast) gives the total number of received
packets.

expExpression.3."adm".4."cond" = "$1==1"

expExpressionValueType.3."adm".4."cond" = unsigned32

expExpressionRowStatus.3."adm"4."cond" = ’active’

expExpression.3."adm".4."accu" = "100-$1/($2+$3)*100"

expExpressionValueType.3."adm".4."accu" = integer32

expExpressionDeltaInterval.3."adm".4."accu" = 5

expExpressionRowStatus.3."adm"4."accu" = ’active’

expObjectID.3."adm".4."cond".1 = ifConnectorPresent

expObjectWildcard.3."adm".4."cond".1 = ’true’

expObjectSampleType.3."adm".4."cond".1 =

 ’absoluteValue’

expObjectRowStatus.3."adm".4."cond".1 = ’active’

expObjectID.3."adm".4."accu".1 = ifInErrors

expObjectWildcard.3."adm".4."accu".1 = ’true’

expObjectSampleType.3."adm".4."accu".1 = ’deltaValue’

expObjectConditional.3."adm".4."accu".1 =

expValueUnsigned32Val.3."adm".4."accu".0.0

expObjectConditionalWildcard.3."adm".4."accu".1 =

 ’true’

expObjectDiscontinuityID.3."adm".4."accu".1 =

 ifCounterDiscontinuityTime

expObjectDiscontinuityIDWildcard.3."adm".4."accu".1 =

 ’true’

expObjectRowStatus.3."adm".4."accu".1 = ’active’

expObjectID.3."adm".4."accu".2 = ifInUcastPkts

expObjectWildcard.3."adm".4."accu".2 = ’true’

expObjectSampleType.3."adm".4."accu".2 = ’deltaValue’

expObjectRowStatus.3."adm".4."accu".2 = ’active’

expObjectID.3."adm".4."accu".3 = ifInNUcastPkts

expObjectWildcard.3."adm".4."accu".3 = ’true’

�

expObjectSampleType.3."adm".4."accu".3 = ’deltaValue’

expObjectRowStatus.3."adm".4."accu".3 = ’active’

Just like in Expression 3, we use an equal

operation to set the conditional object for the
expression evaluation. It should only be evaluated if
the interface is connected (ifConnectorPresent==1).
The following parameters directly correspond to
delta values from the ifTable.

�� (9$/8$7,21�
The most important obstacle in accomplishing

the requirements is the practical impossibility to
upgrade the switches’ SNMP agent to support the
Expression MIB. To solve this problem it would be
necessary to:
a) upgrade the operating system flash with a

version supporting the Expression MIB;
b) use some kind of extension mechanism to add

Expression MIB support to the existing agents.
The AgentX standard does not allow for sub-
agents to retrieve values from the master agent
(Daniele, 2000).
Neither of these options is available at the

moment so we had to go for a different approach:
introduce changes to the Expression MIB so that it
allows retrieving values from remote agents (Lopes,
2003). This approach uses the concept of SNMP
URLs to store the information required to
communicate with remote agents (Lopes, 2002). For
example, to select the V\V8S7LPH� instance of the
router.ipb.pt to be used in an expression we would
use the following URL:
snmp://senior@router.ipb.pt/sysUpTime/0??v2c

This URL is stored in the H[S2EMHFW7DEOH
together with regular variables and so it is
considered as a remote variable. The expression
syntax does not change.

This approach allows us to consider even further
management tasks based on the definition of
expressions:

7DVN���±�6HUYLFH�FRUUHODWLRQ�
The final interesting task is the possibility to

correlate different but related services. For example,
we have all the user account information in an
OpenLDAP (OpenLDAP) directory service and the
file server is based on SAMBA (SAMBA). The
latter retrieves the user account information from the
LDAP server and so it is dependent on it (Figure 2).

Figure 2: LDAP based file server.

From the management point of view, if either
service fails then the access to files from the users
also fails.

The goal of this task is to check if the overall
service intervenient are working properly. For this
we also defined the function checkService($1),
where $1 is of type URL. This function returns the
boolean TRUE if the service responds correctly
(value 1) and FALSE if the service does not respond
(value 0). By summing several functions we can get
the overall response (Expression 5).

ce($2)checkService($1)checkServitotal +=
Expression 5: Service correlation expression.

The SNMP description of the expression is:
expExpression.3."adm".4."srvc" =

 "checkService($1)+checkService($2)"

expExpressionValueType.3."adm".4."srvc" = Unsigned32

expExpressionDeltaInterval.3."adm".4."srvc" = 20

expExpressionRowStatus.3."adm".4."srvc" = ’active’

expObjectID.3."adm".4."srvc".1 = ldap://ldap.ipb.pt

expObjectSampleType.3."adm".4."srvc".1 =

 ’absoluteValue’

expObjectRowStatus.3."adm".4."srvc".1 = ’active’

expObjectID.3."adm".4."srvc".2 = smb://samba.ipb.pt

expObjectSampleType.3."adm".4."srvc".2 =

 ’absoluteValue’

expObjectRowStatus.3."adm".4."srvc".2 = ’active’

This implementation is available online as open
source and it is also associated with preliminary
work on the Event MIB. The agent as well as the
source code may be retrieved from
http://nms.estig.ipb.pt/.

�� &21&/86,216�
Management distribution is a requirement to

modern networks. As features appear and
technology evolves, better tools are needed to
maintain the network in excellent working condition.

The DISMAN workgroup have defined a rather
complete set of MIB modules to ease the distribution
of management tasks under the context of SNMP,
which become compatible with the vast majority of
installed systems.

Mathematical expressions are fundamental to
process and somehow filter the knowledge behind
the evolution of network working parameters. The
Expression MIB is responsible for these tasks and
we have presented also several scenarios where the
concept of management task provided by the
Expression MIB can be applied with success.

The Expression MIB does not allow retrieving
values from remote agents and it is not practical to
upgrade existing SNMP agents with this
functionality. To solve this problem we have
developed and extended the Expression MIB
functionality with the possibility to retrieve values
from remote agents. We have found this
functionality most valuable because it allows not
only to retrieve values from other locations but also
to correlate information from different sources.

5()(5(1&(6�
Martin-Flatin, J., Znaty, S., Hubaux, J., 1998. A Survey of

Distributed Network and Systems Management
Paradigms. In

������R��6� ��	6�+S�� ���+�� +
�
UTV$W+X�X�Y�V)Z�[�\
, Swiss

Federal Institute of Technology Lausanne, August
1998.

Yemini, Y., Goldszmidt, G., Yemini, S., 1991. Network
Management by Delegation. In

�(������3�#Q]�#/%^[�����#)�6 3

�_,U���+��� �+,`����#��� �$�6�)	6 ����a��+ b����$c�dA	���	+�6��,-���6 �e
#<
�#/a�dgf X6W

, Washington, DC, USA, April 1991.
Goldszmidt, G., Yemini, Y., 1998. Delegated Agents for

Network Management. In
#<�h�h�iTO��,-,����� ��	� � ���+�

dj	��6	�k�� ����"Ol���� 3�m6n�a-��3�m
, March 1998, pp. 66-71.

Bieszczad, A., Pagurek, B., White, T., 1997. Mobile
Agents for Network Management.

TO	���� �+ ���
:��� ;����<��� _

, Canada, 1997.
Pham, V., Karmouch, A., 1998. Mobile Software Agents:

An Overview. In
#<�h�h�iT(��,-,-���� ��	� � �����)"Ol���� 3�m6n�"�a���3

o
, July 1998, pp. 26-37.

Krause, S., Magedanz, T., 1996. Mobile Service Agents
enabling Intelligence on Demand in
Telecommunications.

#$�h�(������3�� p�#Q�h�h�
�hq�r('?T�rOdgf X6n

, 1996.

Lopes, R., Oliveira, J., 1999. Software Agents in Network
Management. In

���)����3�� p� R��-W��� �#)�� ���$��	6 � ����	6�
T(��� p������������?���>���� ��� ����� ���O#)� p����),>	6 � ����
�_��� ��,?�Os
#�Tt��#<
>f X�X

, March 1999, Setúbal, Portugal.
Sun Microsystems. Java™ Management Extensions

Instrumentation and Agent Specification, v1.0.
http://www.javasoft.com/.

SNMP Research. http://www.snmp.com.
DISMAN Charter.

http://www.ietf.org/html.charters/disman-charter.html
Schoenwaelder, J., 1997. Network Management by

Delegation: from Research Prototypes towards
Standards. In

��������3�Y� R?u���� �6 ����+���/����	��>a-�+ b����)c�� �+�
T(��� p�������������e�u��ha8T(Y

, Edinburgh, Scotland, UK, May
1997.

Lopes, R., Oliveira, J., 2000. Distributed Management:
Implementation issues. In

��������3�� p� R��O#$�6 ���$��	� � ����	6�
T(��� p������������?����=>��;�	��������?� ��#�� p��)	��� ���+�+ �+����p����
��� ���+ �����6� ��'��+��� �����)�$"�
���� ��������"�	����?���6����	6 � ���8���v R��
#$�6 ���$���� +s8
�
U�OSOSj[Z�Z�Z

, August 2000, L’ Aquila, Italy.
Decker, E., Langille, P., Rijsinghani, A., McCloghrie, K.,

1993. Definitions of Managed Objects for Bridges. #$�6 ���$���� �S���w������� p����?TO��,-,����6 �>W�\�X�m
, July 1993.

Waldbusser, S., 2000. Host Resources MIB.
#��6 �������+

S���w������� p�����T(��,-,-���6 ��[ho�X�Z
, March 2000.

Leinwand, A., Conroy, K., 1996. Network Management.
A Practical Perspective – 2ed. September 1996.

Cisco Systems, How To Calculate Bandwidth Utilization
Using SNMP.

McCloghrie, K., Rose, M., 1991. Management
Information Base for Network Management of
TCP/IP-based internets: MIB-II.

#��6 ���)���� +S���w������� p����
T(��,>,����� �?W�[6W+m

, March 1991.
Kavasseri, R., Stewart, B., 2000. Distributed Management

Expression MIB.
#��� ���)���+ �S���w6�+���� p����?TO��,>,����� �

[�X�Y�[
, October 2000.

Cisco Systems, Performance Management: Best Practices
White Paper.

Daniele, M., Wijnen, B., Ellison, M., Ed., Francisco., D.,
Ed., 2000. Agent Extensibility (AgentX) Protocol
Version 1.

#��� ���)���+ �S���w6�+���� p����?TO��,>,����� ��[�o�\�W
,

January 2000.
Lopes, R., Oliveira, J., 2003. Delegation of Expressions

for Distributed SNMP Information Processing.
Submitted to

#)�6 �$�6�)	� ���?a��+ b��+��chd^	���	��U��,>���6 �s-#/d
[Z�Z+m

, Colorado Springs, Colorado, USA 2003.
Lopes, R., Oliveira, J., 2002. A Uniform Resource

Identifier Scheme for SNMP. In
��������3Ux����)c���R��/�y#Q%

r6������	� � ���vz1dj	���	+���,-���� �s�#/%>rhd{[6Z�Z�[
, Dallas, TX,

USA 2002.
OpenLDAP. http://www.openldap.org/.
SAMBA. http://www.samba.org/.

