

Abstract-- Management processes have to react on time to the
new challenges put by a crescent movement of the computing
world to the Internet paradigm. The enormous base of legacy
knowledge and legacy systems leads the SNMP management
framework to a necessary choice in nowadays management
scenarios. However, even with the recent SNMPv3, its services
correspond roughly to low-level operations for setting or
retrieving network equipment parameters. The IETF
Distributed Management working group have been producing
normalization documents that intent to apply to the
enrichment of SNMP semantics, especially in what concerns
the processing of management information.
This paper will present the recent outcome of this WG and
will discuss an implementation project that aims to apply
mobile agent technology in these scenarios.

Index terms-- Distributed management, SNMP, Disman.

I. INTRODUCTION

For several years the network management buzzword was
mostly associated with SNMP. Guided by the simplicity
and the shorter inference principles soon has conquer the
attention of a market with a big appetite for this solutions.
However, its evolution has suffered from several
drawbacks and has open space for other approaches.
The straight path that was maintained by SNMPv3 working
group, which last results were published as draft standards
by the IETF, may have provide a new breath into the
SNMP management framework. SNMPv3 tries to eliminate
previous versions weaknesses by the inclusion of some new
features. Among these are the security support and a
flexible architecture that allows the redefinition of current
modules or the introduction of new parts inside the
framework. Each SNMP configuration is classified as a
“SNMP Entity” composed by several interacting modules:
Dispatcher, Message Processing, Security, Access Control
and Application module. The combination of these modules
allows providing different SNMP roles (i.e. an agent, proxy
or manager) [1].
The Application(s) use services from the SNMPv3 engine
to send and receive messages, authenticate, encrypt and
control the access to managed objects [2].

 R. P. Lopes is with the Instituto Politécnico de Bragança/ESTiG, 5300
Bragança, Portugal (e-mail: rlopes@ipb.pt).
 J. L. Oliveira is with the Universidade de Aveiro, DET/IEETA, 3810
Aveiro, Portugal (e-mail: jlo@det.ua.pt).

The Dispatcher subsystem coordinates the communication
between SNMPv3 engine subsystems and differentiates
modules belonging to the same subsystem. Based on the
PDU information, it determines which application should
be invoked and coordinates the respective transport
mappings.
In a working scenario, before transmitting the message, the
dispatcher checks the selected protocol version and type
(Fig. 1). Following this information, the adequate message
processor is invocated which itself relies on the next
subsystem (security) to pack the message.

Command
Generator Dispatcher Message

Processor Security

SendPDU

prepareOutgoingMessage

Sending
Message

Response
Reception

prepareDataElements

processIncomingMsg

processResponsePdu

generateRequestMsg

Fig. 1. Commands flow inside an SNMP Entity.

The SNMP framework is a centralized approach, i.e. a
NMS uses distributed agents to collect management
information. This data is retrieved on demand by the NMS
to be processed.
This approach has some drawbacks, in particular due to the
lack of extensibility and scalability of the model on very
large networks. This constraint results from the inability of
a centralized manager to handle huge amounts of
management information and also because centralized
polling across geographically distributed sites is infeasible
and expensive [3]. Moreover, system updates usually entail
the modification of several agents or of the management
station itself. In addition, there are occasions where it is
necessary to cope with situations where the management
station is not accessible. The classic management
architectures are not well suited for low-bandwidth or
disconnected operation.
Several authors have addressed these problems along the
past years [4][5][6] resulting in ad-hoc and partial solutions
typically based on management distribution and delegation.

Distributed Management: Implementation issues
Rui Pedro Lopes, José Luís Oliveira

Inside the IETF, the Distributed Management (Disman)
WG was chartered to define an architecture where a main
manager can delegate control above several distributed
management stations thus improving scalability through
distribution and allowing “off-line” operations.

II. DISMAN

Management distribution allows reducing the processing
load on traditional centralized management station (NMS)
by delegation tasks upon several Distributed Managers
(DM) or upon more powerful agents. A DM is an SNMP
entity that receives requests from another manager and
executes those requests by performing management
operations on agents or other managers.
Since the management entities are split over the network
and collaborate between themselves by assignment, a
hierarchy of several “islands” is created increasing the
robustness and fault tolerance of the overall management
system. Although if the access to the central manager is not
possible, each DM may handle locally critical situations.
The IETF Disman framework is based on distributed
applications and services. This kind of application performs
some management function, often by monitoring and
controlling managed elements. The distributed management
services can perform functions or store information once
for all applications on the local system thus making a set of
applications more efficient. Each service is provided by a
specific MIB interface.
Currently there are being proposed several MIB to address
different but complementary issues of management
operations distribution [7]:

• Event MIB
• Notification Log MIB
• Remote Operations MIB
• Schedule MIB
• Script MIB
• Expression MIB

The Event MIB is the successor of the SNMPv2 Manager-
to-Manager MIB. It provides the ability to monitor MIB
objects either locally or remotely and takes an action when
a trigger condition occurs.
The Notification Log MIB is intended mainly for
notifications providers but may be also used by consumers.
It defines a mechanism to cope with notifications lost by
recording each notification data.
The Remote Operations MIBs group (ping, traceroute,
lookup) enables the correspondent network-checking
operation to be performed at a remote location. It provides
a standard way to perform remote tests, to issue periodical
sets of operations, and to generate notifications with test
results.
The Schedule MIB provides the definitions to perform the
scheduling of actions periodically or at specific times and
dates. The actions are modeled by SNMP set operations on
local MIB variables (restricted to INTEGER type). More
complex actions can be realized by triggering a

management script, which is responsible for performing
complex state transitions.
The Script MIB module allows the delegation of
management functions over distributed managers.
Management functions are defined as management scripts
written in a language supported by the managers. It may be
a scripting language (such as TCL) or native code, if the
remote site is able to execute this code. The module does
not make any further assumptions on the language. The
distributed manager may be decomposed in two blocks: the
SNMP entity, which implements this MIB, and the runtime
system, capable of executing the scripts. The Script MIB
sees the runtime system as the managed resource, which is
controlled by the MIB. The runtime system can be defined
as an SNMP application, according to the SNMPv3
architecture.
The Expression MIB was planned to move to the agent side
part of the management information processing typically
performed by managers. In other words, it supports
externally defined computation expressions over existing
MIB objects. The Expression MIB allows providing the
Event MIB with custom-defined objects. The result of an
expression can trigger an event, resulting in an SNMP
notification. Without the Expression MIB such monitoring
is limited to the objects in predefined MIBs.
There are several reasons for a manager to apply some kind
of expression on management information. Aggregation of
data can be done in simple statistical tasks, such as the
percentage of inbound discarded packets that contained
errors (1), or in expressions with a higher degree of
complexity.

nProtosifInUnknowifInErrorsdsifInDiscar
ifInErrors100

++
× (1)

The work presented here is mostly based on an
implementation of Expression MIB proposal.

III. EXPRESSION MIB OVERVIEW
The Expression MIB is currently an internet-draft (11th) of
the Distributed Management working group, within the
Operations and Management Area of the IETF. The MIB is
divided in three main groups [8]:

• expResource – this group is related to resource
control, with particular incidence on sampling
parameters since this operation can have some impact
on system resources.

• expDefine – is organized in three tables which gather
information about the expression definition and about
the errors occurred while evaluating it:
a) expExpressionTable, defines the expression string,
the result type as well as the sampling period.
b) expErrorTable maintains a table of errors’
registers gathering information such as: the last time
an error occurred on evaluating the expression, the
operation in which it occurred, the error type.
c) expObjectTable controls each element
characteristics inside the expression. The expression

string may contain variables and each variable may
have different sampling types and be or not wild-
carded.

• expValue – this group has a single table which
instantiates the evaluation objects. It is by querying
this table that the result from the expression is known.

A. Sampling and Wildcards
The Expression MIB supports three types of sampling:
1. absolute – the objects are sampled just before

calculating the result.
2. delta – the difference from one sample to the next. It is

necessary to maintain the last sample. Creates a
constant overhead whether or not anyone is looking at
the results, so not very suitable for severely limited
environments.

3. changed – boolean indicating whether or not the object
changed its value since the last sample.

In addition to sampling, the MIB also defines wildcarding,
allowing the usage of a single expression over multiple
instances of the same MIB object. While regular objects are
resolved by a SNMP Get operation, wild-carded objects are
controlled through the GetNext operation. Users are
familiar with wildcarding for referencing multiple files
(such as “cp foo.* /tmp”). On this MIB, wild-carded objects
are attributes. If there is more than one wildcard variable on
an expression they all must have the same OID termination
(semantics) to maintain coherence on the result.
For example, the expression (2) has two variables each
corresponding to a wild-carded OID, ($1= “1.3.6.1.32.1.4”
and $2= “1.3.6.1.50.2.7.1.321”).

100*$1/$2 (2)

The object values are retrieved by GetNext operations thus
retrieving the instance INDEX. If the result from GetNext
$1 is “1.3.6.1.32.1.4.1.2.3”, the INDEX part is “1.2.3”. So
$2 will be “1.3.6.1.50.2.7.1.321.1.2.3”.
An OID can be specified (expExpressionPrefix) in order
to help retrieve the INDEX. In this example it can be
captured in each of the two OIDs since both follow a MIB
definition where it is possible to look at the INDEX clause.

B. Subsets
According to the conformant statements the implementation
of the Expression MIB can leave out several parts.
1. No wildcards - significantly reduces complexity.

Suitable for expressions made up of individual MIB
objects but not suitable for expressions applied across
large tables.

2. No Deltas - reduces state that must be kept and the
burden of ongoing processing unnecessary sampling
threads. Suitable for applications that do not require
expressions or events on counters.

3. One object expressions - reduces the complexity of
parsing expressions, retrieving multiple objects per
expression and doing expression evaluation. This is the

slightest implementation of the Expression MIB that
supports the threshold of the Event MIB.

C. Expression Definition
The key aspects in defining expressions are parameters,
results and operators.
We can define an expression as:

“result = parameter operator parameter”
where “parameter = constant | variable | function | result”.
The Expression MIB allows several operators with C-like
significance, such as:

() + - * / % & | << >> ! && ||
== != > >= < <=

and a set functions, such as the presented in Table 2.
Table 2 – Functions.

Function # Param. Parameter type
counter32 1 integer
counter64 1 integer
arraySection 3 array, integer, integer
stringBegins 2 octetString, octetString
stringEnds 2 octetString, octetString
stringContains 2 octetString, octetString
oidBegins 2 oid, oid
OidEnds 2 oid, oid
oidContains 2 oid, oid
Average 1 integer
Maximum 1 integer
Minimum 1 integer
Sum 1 integerObject* (wildcard)
Exists 1 anyTypeObject

D. Expression Values
An expression is executed through a row on the
expValueTable. Each row has only one column, formatted
according to the result type of the expression. The value is
accessed by an OID containing the OID for the data type,
the expression name and a fragment (Fig. 2).

OID for the data type from expValueTable expression
name fragment

0.0.
0

instance

instance that
satisfied the

wildcard

No
wildcards

Fig. 2. Value identification OID.

The expression name has the form of x.“owner”.y.“name”
converted to dot separated integers. The integer x is the
length of the owner and y is the length of the string which
identifies this expression to the particular owner. Each
word character is converted to integer and separated from
the other integers by a dot.

Field Code Changed

Comment [rp1]: Nao percebi
o que queria dizer com isto…

The fragment starts with “0.0.” and ends with a zero, if
there is no wildcard or, otherwise, with the instance that
satisfied the wildcard.

IV. EXPRESSION MIB IMPLEMENTATION ISSUES
The implementation of the Expression MIB can be divided
in two sections (Fig. 3):
1. The communication module, responsible for receiving

and sending SNMP commands.
2. The agent, responsible for the SNMP agent behavior.

Agent

SNMP Stack

Other Com.
mechanism

Fig. 3. Agent modules: communication and agent.

With a well-established interface between the
communication mechanism and the SNMP engine it is
possible to switch modules maintaining the agent. This
feature is useful if we want, in runtime, to use SNMP or
other communication method, for example, to check
CORBA or RMI performance, or to add mobility to the
agent [9].

A. Agent Structure
Considering the SNMP operations and the tree-like
organization of objects in the agent, some decisions can be
made to help on the agent architecture planning.
Management operations have information about “which”
object and “what” to do with it. In “which”, it is possible to
point precisely the object (the case of get and set) and to
define a walking procedure (get-next and get-bulk). In
“what”, the operations are retrieval (get, get-next and get-
bulk) and restore (set).

Agent
Object

Object
Object

. . .

GET

GET-NEXT

GET-BULK

SET

GET

SET

Fig. 4 – SNMP operations on Agents.

Adapting these concepts to an O-O language, the “which”
is modeled by a container class (Agent) and the “what” are
methods to call on contained objects (Object) (Fig. 4).

B. Expression MIB Objects
The user defines an expression by setting some objects on
the expExpressionTable and on the expObjectTable.

C. Expression Parser
To evaluate an expression it is necessary to recognize the
expression components (operators, functions, constants and
variables), i.e. the lexicon, and the grammar (the expression
organization). There are, available as public domain
software, lexical and grammar analysis tools, which
generate code such as C [10] or Java [11]. As this
implementation is Java based, the chosen tools were JLex, a
lexical compiler, and JavaCup, a grammar compiler [12].
Both compilers generate source code based on specification
files. These routines are then compiled (into Java .class
files) and included in the Expression MIB agent.
The lexical analyzer starts reading the stream of characters
and tries to matches the sequences identifying tokens.
The tokens information is forward to the grammar, which
groups tokens into meaningful sequences and invokes
action routines to act upon them. In this particular case, it
must recognize a complete expression and evaluate the
result.

D. Value objects
How do the previous sections fit in the Expression MIB
implementation? To better answer this question, it is
necessary to realize how the Expression MIB works (Fig.
5).
When started, the agent waits for input. When receiving a
SET message it inspects to which table it is destined. After
populating the appropriate table, it confirms if both the
expExpressionEntryStatus and all the related
expObjectEntryStatus are set to ‘active’. If so, it creates
an entry on expValueTable, after checking for syntax
errors.

Start

wait for input

is to
ExpExpression

Table?

is to
ExpObjectTable

?

populate
ExpExpressionTable

populate
ExpObjectTable

is
ExpExprEntryStatus and
ExpObjectEntryStatus

Active ?

y

y

y

n

n

n

create ExpValueTable

Fig. 5. Expression definition.

This object is then responsible for calculating the
expression. If the expression has some sort of delta
sampling, it launches a thread to periodically calculate the
expression and store the result. If the expression is
‘absolute’, meaning that there are no periodic sampling

Field Code Changed

involved, the expression is calculated only when the
expValueTable is queried.
The process of calculating the expression is, on the whole,
the most complex part, particularly when wildcarding is
used. For this purpose, the agent:
1. Retrieves the expression string (expExpression).
2. Creates a parser object (based on the code generated by

JLex and JavaCup).
3. Checks to see if the expression is wild-carded

(expExpressionPrefix).
4. Builds a list of objects (variables) that the expression

contains.
5. Retrieves the value of each object (expObjectTable).
6. Calculates the expression value and stores it in the

appropriate expValueTable instance.

E. Problems and Solutions
The Expression MIB specification is well written and
shows some examples to ease clarifying the agent
operation. It is easy to implement the expExpressionTable
and the expErrorTable although the expObjectTable has
some aspects that require further explanation. For example,
the wildcarding aspect is somehow very scattered on the
document. The objects expObjectDiscontinuityID and
expObjectDiscontinuityIDWildcard are overlooked, so it
may be difficult to understand its role. It would help the
implementers if the expObjectConditional objects where a
little bit more explained in the document, as they are
essential for condition checks.
Other problems may arise when moving processing to the
agent, in particular if it is running on restricted
environments in terms of memory or CPU.
To study the impact of adding a parser to an agent we have
performed some preliminary load tests. In these tests we
were mainly concerned with the overload of delta sampling
by comparing this situation to the situation of ‘absolute’
value.
We measured the agent used memory for 0, 1, 20 and 100
expressions with one (Fig. 6) and three (Fig. 7) variables
both for absolute and delta sampling.
For reference, we measured the minimum memory spaced
required by the JVM and found that it uses 3780 Kbytes.
The Expression MIB agent with no objects (0 expressions)
uses an additional 2104 Kbytes.
We used a Linux box (kernel 2.2.14, glibc-2.1.1) with the
Blackdown (www.blackdown.org) port of the JDK1.2.2 –
Classic VM (build Linux_JDK_1.2.2_RC4, native threads,
sunwjit).

0

2000

4000

6000

8000

10000

12000

0 1 20 100

Expressions

M
em

 (K
B

yt
es

)

Absolute
Delta

Fig. 6 – Memory load for one variable expression.

We can see that, as expected, the number of expressions is
proportional to the used memory. Moreover, the difference
between delta and absolute expressions is considerable
(near 25% for 20 one variable expressions and 18% for 100
one variable expressions).

0

2000

4000

6000

8000

10000

12000

0 1 20 100

Expressions

M
em

 (K
B

yt
es

)

Absolute
Delta

Fig. 7 – Memory load for three variables expression.

The memory requirements increase with the number of
expressions and with the number of variables per
expression.
For CPU utilization we also did some tests by changing the
sampling interval (for absolute sampling the CPU is used
only when a get message is received on a value object). For
100 expressions with evaluated every five seconds the
processor (Intel Pentium II 333MHz) was near 100% load.
For 20 expressions evaluated every ten seconds it as near
10%.
For the pointed values, the memory requirements are
somewhat excessive for restrictive environments. The JVM
we used (Java 2 Platform Standard Edition) is not targeted
to such kind of platforms and we did not try a more
adequate virtual machine, such as the Java 2 Micro Edition.
In terms of CPU usage, it is very dependent of the sampling

period and may be considered acceptable if the interval
between samples is sufficiently long.

V. FUTURE APPROACHES
For further improving the Disman framework and, in
particular, Expression MIB implementations, we are
working on two different approaches: using mobile agents
in distribution and the definition of SNMP Macros.

A. Mobile Agents in Distribution
The Disman framework aims at distributing the
management power among agents (also called Distributed
Managers) to cope with network scale problems and offline
operation.
The framework, as seen above, describes a way to define
expressions on values sampled from the local host (it is
possible to sample values from another hosts but it is
necessary to define the Script MIB and the appropriate
scripts, which further increases the platform resource
requirements and complexity). Moreover, the framework
does not define any load balancing mechanism to cope with
eventually limited platform resources.
On such scenario there are several advantages of using
mobile agents. By mobile agents we consider software
entities, which can exhibit mobility by actively changing
their execution environment, transferring themselves during
execution [13]. There are, at the moment, several mobile
agents platforms, relying on interpreted code or on the Java
Virtual Machine [14][15][16].
In fact, they can [17]

• save significant bandwidth by moving locally to
the resources they need;

• carry the code to manage remote resources and do
not need the remote availability of a specific
server;

• perform load balancing;
• correlate information from several agents.

The mobility support in Distributed Managers allows them
to adapt to a changing environment and simplifies tasks
such as agent and tasks distribution.
Fig. 8 presents two situations of Distributed Managers with
mobile characteristics. In the first situation (one) the DM
choose to clone to a different management domain because
the instantaneous load increased. Situation two presents an
approach where the communication with the upper
management station is interrupted. As an example, the DM
may have detected a problem in the platform where it was
installed and choose to migrate to a different location to
continue its operation without assistance from the
management station. When the station gets back on-line it
may migrate to the original host and continue its operation.
Other situation where this move may occur is when the
interaction between the DM and some agent delivers high
volumes of traffic. In this case, instead of generating traffic
across several links the DM can move near the agent and
interact with it locally. The DM can dynamically infer
about these condition in order to adapt to the best network
position and the best host to perform.

1
2

NMS

Mobility
DM

Mobility
DM

Mobility
DM Mobility

DM

Fig. 8 – Mobile Disman Architecture.

In addition, the migratory nature allows the Expression
MIB to sample values from any host in the itinerary without
the need for further complexity.
From the usability point of view, the user (manager) may
define DMs in the topmost Management Station and set its
behaviour. After creating the desired DM he can define an
itinerary to be followed or some kind of distribution policy.
It must be considered that the SNMP framework does not
expect the agents to move, so it is necessary to maintain
knowledge of the current location of the agents. This fact
also helps managing the DMs. The join of the two entities
implies the introduction of SNMP services inside an Agent
System (the host kernel for agents).

B. SNMP Macros
The SNMP framework and, in particular, the Expression
MIB, requires creating or changing several objects values
for the definition of a single expression (typically 10 to 15
objects). This situation is similar to Assembly
programming, where many instructions are necessary to
define a single, higher-level operation.
Obviously, this fact causes difficulties to the user when
interacting with the Network Management System. It is
important to have a tool to ease the burden caused,
particularly, by repetitive tasks. The first step in this
direction goes through creating Macros – a series of
commands and instructions that can be grouped together as
a single command to accomplish a task automatically.
SNMP commands are used to retrieve, create and/or change
data on the agents. Each command requires an identifier
(the OID) and, in the case of creating or changing a
parameter, its value. By gathering all the information about
an operation (OIDs, values, types) according to some
format it is possible to define what we call SNMP Macros.
We define a Macro as a tree structure, possibly having
objects from several MIBs, each MIB having several
TABLES and/or several VALUES (Fig. 9). We use XML
to define these tags.

Macro
(name)

MIB
(name)

MIB
(name)

TABLE
(name, oid, type)

VALUE
(name, oid, type)

TD
(name, oid, type)

TD
(name, oid, type)

Fig. 9 – Macro structure.

On a practical scenario, the user interacts with a graphical
user interface to create a set of Macro templates suitable for
the desired operations (Fig. 10). These Macros can then be
stored for future use.

GUI

User Macro
Definition

XML

SNMP Agent

Fig. 10 – SNMP Macro definition.

When executing the Macro, the system reads the XML tree
and performs the defined operations.

VI. CONCLUSION
The management of enterprise networks, i.e., to monitor
and to act on network components, is a task that involves
commonly the use of heavy and complex applications. This
difficulty is further enlarged in situations where network
scale or connection characteristics inhibit the full use of the
SNMP framework.
The Disman framework, proposed by the IETF, addresses
these problems by distributing some of the management
application responsibility to the agents (Distributed
Managers).
This paper has presented an implementation of the Disman
Expression MIB and suggests its association with mobility
support, permitting the Distributed Manager to adapt to a
changing management environment. Furthermore, it allows
increasing management efficiency by reducing management
traffic, providing a better use of network resources and
enhancing flexibility. We also suggest SNMP Macro
definition to relieve the user from the burden caused by
repetitive tasks.
The mobility characteristic raises several new issues in
Disman DMs. At the moment we are mainly concerned
with the performance of the DM in terms of load balancing
and network efficiency. The next step to be performed is to
associate the Expression MIB implementation with

mobility characteristics and get historical data from
network nodes to perform a study aiming at extracting
“when to move” information. An adequate sensing
mechanism and correct decision mechanisms may increase
the management system overall efficiency.

VII. REFERENCES
[1] J. Case, R. Mundy, D. Partain, B. Stewart, RFC2570 (I),

“Introduction to Version 3 of the Internet-standard Network
Management Framework”, Internet Request for Comments 2570,
April 1999.

[2] B. Wijnen, D. Harrington, R. Preshun, RFC2571 (DS), “An
Architecture for Describing SNMP Management Frameworks”,
Internet Request for Comments 2571, April 1999.

[3] R. Sprenkels, J-P Martin-Flatin, “Bulk Transfer of MIB Data”,
The Simple Times, Vol. 7, N. 1, March 1999.

[4] G. Goldszmidt, Y. Yemini, “Delegated Agents for Network
Management”, IEEE Communications Magazine, Vol. 36 No. 3, pgs.
66-71, March 1998.

[5] José Luís Oliveira, Arquitectura para Desenvolvimento e
Integração de Aplicações de Gestão, PhD Thesis, University of
Aveiro, September 1995.

[6] José Luís Oliveira, J. Arnaldo Martins, “A Management
Application Programming Interface”, Proc. DSOM’94, Fifth
IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management, October 1994.

[7] Distributed Management (disman) Charter,
http://www.ietf.org/html.charters/disman-charter.html

[8] Bob Stewart, Ramanathan R. Kavasseri, “Distributed Management
Expression MIB”, draft-ietf-disman-express-mib-11.txt, 4 February
2000.

[9] José Luís Oliveira, Rui Pedro Lopes, “Distributed Management
based on Mobile Agents”, Proc. of the 1st International Workshop on
Mobile Agents for Telecommunications Applications – MATA’99,
October 1999, Ottawa, Canada.

[10] Manson, T., Brown, D., lex & yacc, O’Reilly & Associates,
1990, ISBN 0-837175-49-8.

[11] Appel, A., A Modern Compiler Implementation in Java,
Cambridge University Press, 1998, ISBN 0-521-58388-8.

[12] JLex & JavaCup,
http://www.cs.princeton.edu/~appel/modern/java/.

[13] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, “Mobile-
Agent Coordination Models for Internet Applications”, IEEE
Computer, Vol. 33, N. 2, February, 2000.

[14] Grasshopper, The agent Platform, http://www.grasshopper.de/
[15] IBM Aglets Software Development Kit,

http://www.trl.ibm.co.jp/aglets/
[16] Voyager, http://www.objectspace.com/products/prodVoyager.asp
[17] Rui Pedro Lopes, José Luis Oliveira, “On the use of Mobility in

Distributed Network Management”, Hawaii International Conference
on System Sciences – HICSS, January 2000, Maui, Hawaii, EUA

