-

SOUR

SYSTENA

INTELLIGENT QUERY SY STEM

Functional Specification
&
Architecture

Verson: 2
Revison: 1

COPYRIGHT © 1993, SYSTENA



Table of Contents

Part |
1 CONLEXL ...ttt ettt e e e e s ae e e e e e sRe e e b e e ae e e n e e nne e ereennneenne 2
1.1 DOCUMENE LBYOUL ......coeveeeiiieeiee ettt 2
2 1QS N SOUR COMEXL........ccverieerieeiesiiesieeie ettt be e st sseesreenae e e sneeneas 3
I (@57 107 [ 1o o= 1 PSS 4
Part |1
4 1QS OPEratioN MOUES......cvieiieeiiee e etee s ee et re e ee e e b e e sre e ereesaeeereenseas 5
4.1 ASSSIEO MOOE ... .cocteeieeeecieeste et reeeesree s 5
411 SYNACHC HEIP .coeeiiceeeeee e e 6
4.1.2 SEMATC HED .o 7
4.1.2.1 REAUNENCY .....oocveeiiiiiiiecie ettt et 8
4.2 BACNMOUE.......ooeeeeeie ettt s snee e 9
5 Interface QUENY LaNQUBOE........coouieiieiie ettt ettt sttt sre e st neeneas 10
5.1 TQL GraMMEI(S)...ecueeueeueereereereersesseriesueseseessessessessessessessesseesesssessessessessessesses 13
LI =] 1 o VSRS 14
Part 11
7 1QS data SITUCIUIES AESIGN ...ttt sbenre s 18
8 1QS AChITECIUIE........eeceeee e e e e eene e e snnee s 20
Part IV
S 17 S 107 S 22
9.1 Interaction With ConCERLUAIZEN..........cocveeiieie e 22
9.2 Interaction with Comparator & MOTITIES...........ccoviiirinireee e 22
0.3 AdADIADIE UL......oee s 22
S = = 110 SRS 23
ApPPendixX A - TQL QIraMIMEl ........eeeieie ettt e e b ere e re e 24
APPENCIX B = TQS AP ...ttt te e e nreenne e 30
o D ez B )Y -SSR 30
B.2 FUNCHONS ..ottt sneenae e sneenneeneens 31

INESC 2361 IQsFunctional Specification & Architecture 1



Part |
1 Context

This document presents the Functiond Specifications of the Intdligent Query System
(IQs) of the Sour system, following the informa requirements established in a former
document [Systena & Sss1993].

Its main purpose is to describe the main design issues of the 1Qs and to descibe the
way of communication between 1Qs and the other SOUR modules.

IQs is a front-end component of SOUR. Thus, its specification dso includes a
description of the user-interface, as prototyped in Visuad Basic Professond Verson 3.0.

This overdl description will dso refer to some technical aspects related to 1Qs
integration with the subsequent C layer and with other modules, such as the Conceptudizer
and the Result Manager, and the underlying modules of the SOURLIB software bus (such as
C1s [CTs-1.4 1993] and in paticular ERA [ERA-3.5a 1994]) to which 1Qs has been
plugged at find implementation leve.

1.1 Document Layout

This document is structured as follows.

It starts by establishing out IQS'srolein SOUR’s overal architecture.

Next, 1QS's man objectives are put forward (this will omit many technicad detalls
which will be described later on the text).

That will lead the reeder to 1QS's modus operandi, which reflects much of thetool”s
design philosophy.

A Query Language that serves 1Qs's needs will be presented, as wel as the Minimal
Efficient Query concept. The set of templates, i.e, the set of query phrases considered to
be generd enough to cover any 1Qs search will then be introduced.

After this, some technical details will be referred in order to judtify the data structures
choice that serve both convenience and efficiency gods, during search, retrievd and
manipulation operations over repository objects.

Fndly, 1Qs architecture is presented, showing relations between internd parts as well
asthe externd relations with other SOUR modules.

The Interface Query Grammar is presented in Appendix A.

In Appendix B the first contact with 1Qs AP takes place: the prototype definitions of a
minima set of functions that provide for the basc congtructs upon which the complete
module architecture is based, will be presented.

INESC 2361 IQsFunctional Specification & Architecture 2



2 1QS in SOUR context

The Intdligent Query System is the SOUR module exclusvely concerned with search
and retrieva of information saved in the repostory during the Conceptudization phase.

Therefore, 1Qs is one of the end-components of the SOUR globd architecture, as
shown in the diagram bellow.

Methodology Assistant
| (o]
I c b
m c n o J-
[o) t.
H P n m o
y a c Q p. r
P ¢ e u & i
e e :
t r
e A M n
d n ; y o t
i a d e
t | ! S i d
. i y f
o ! z s ]
r z e t i
r r e r
m Envision
| Attempt Automatic Conceptualization | Result Manager | User Interface Services |
L Sers O B R fls I rsB |
| Repository | Text Engine | Thesaurus |

Figure 1 - IQs integration in SOUR globa architecture

IQs is the browsing tool of the SOUR environment with the capability of accepting
gueries in order to retrieve reusable software components.

It offers the posshility of condruction of query phrases, which are ultimately
converted in repository search functions.

The queries made by using |1Qs are based on the conceptua schema of the SOUR
repository presented in [CON-2.0 1993].

So, 1Qs will be able to browse and recover reusable software components, which
were previoudy classfied by the Conceptualizer and inserted into the repository, based on a
linguigtic gandard.

By taking a minima (but precise) grammatical description of an intended set of
objects and by invoking a st of functiondities provided by SOURLIB (mainly by ERA1) as
well as modules at the same abstract level (as Conceptudizer), the 1Qs st of functions will
provide for query answers which are sets of objects.

1cf. [ERA-35a21994] and regarding [ERA-1.2 1993].

INESC 2361 IQsFunctional Specification & Architecture 3



3 1QS main goals
The IQs subsystem of SOUR has to accomplish the following main gods

- to provide for the search of objects previoudy inserted into SOUR's repository by
Conceptudizer, and to interact (as the main SOUR browsang tool) with the other
components of the SOUR layout;

- to mirror the repository’s logica schema for the query congtruction, i.e, to alow
search by attributes (generic ones or class defined), facets, links, characteristic
relaions, aggregation degree, etc.;

- to dlow search based on both gtrict or fuzzy criteria (in latter case, a certain degree
of semantic amilarity with respect to a certain object should be maintained during
searching and filtering); fuzzy search will be implemented on top of CTS
functiondity;

- to be able to interact with other SOUR tools by feeding them with the querying
results, in an easy access format; visudization of query results via the Result
Manager isatypicd example of thiskind of cooperation;

. to avoid, as much as possble syntactica as wdl as semantic errors during query
congtruction and resolution; such a congtant assstance, guiding the end-user dl
over the query process is, perhaps, 1Qs's mgor added vaue, being materidizedin
an Assisted Mode of operation; being SOUR a set of tools oriented towards
software reuse, it seemslogicd to offer such adegree of user friendliness,

- to dlow dso an operation mode in which convenience is deferred in favor of
efficiency, by removing some ad festures and interaction from the interface and
providing batch resolutions. A Batch M ode way of querying is offered;

- to provide for a good integration of the various operation modes (Asssted and
Batch), making it easy to swapp between them and reusing, a will, the set of
cadculated results; this integration is done on behdf of a History data structure that
stores query phrases (and respective results) produced during the actua 1Qs
sesson.

- toimplement aminima leve of adaptability to the users particular needs, by making

it possible to build, maintain, save, load and join query Histories, and by ensuring,
a every moment, the coherence of the Historiesinternd data;

INESC 2361 IQsFunctional Specification & Architecture 4



Part |1
4 1QS operation modes

From the main gods IQs is purposed to achieve, one can detect the convenience of at
least two fundamental operation modes:

. an Assisted Mode, mainly concerned with vaidation procedures and therefore
awaystrying to give a nor-empty solution set to the query;

. a Batch Mode, best suited to evauate large sets of queries without any
interference from users,

The existence of these two operation modes makes possible the use of 1Qs by
differently skilled users. This capability encompasses the god of adaptability.

A novice end-user will naturdly tend to gart by using 1Qs in Assisted Mode. After
becoming sengtive to the grammar behind the interaction scheme, it will be understood that
Batch Mode can provide for less redtrictive ways of querying.

IQs will provide a pseudo-naturd language based way of querying. The formaism
supporting the description of such alanguage will be agrammear, which will mainly alow to:

- check if the submitted query phrase is syntacticaly well formed, thet is, if it belongs
to the possible st of valid query phrases,

- to support desgn, implementation and operation of the interface layer ; the visud
layer will then be implicitly under the control of the grammar behind the query
description language.

This grammar can be used to automaticaly generate aparser. Thus, the parser is the
code implementation of the grammar deterministic automata.

4.1 Assisted Mode

Context Dependency isthe key feature of the Asssted Mode, dlowing a permanent
gyntactic and semantic help while aquery is under congtruction.

In practica terms, it implies that at any moment users are only alowed to proceed if
the possible query result is a non-empty set of solutions.

This means tha 1Qs doesn't have to ded, in Asssted Mode, with problems of
grammar incompleteness, since the activation state of a query iswell defined and only occurs
when a complete grammar Stuation is possible.

S0, there dways must be a complete knowledge of dl the possble future valid Sates,
knowing the actua one.

INESC 2361 IQsFunctional Specification & Architecture 5



Thisis possible because as 1Qs accepts query phrases, it must follow a grammar that
controls the query execution and dso determinigticdly sets the next date of the user
interface.

In other terms, by knowing:
- the query construction language;
- the attributes and respective vaues that till remain to inspect,

IQs implicitly knows the set of tokens that can be added to the query synthesized so far and
gill can produce vdid results.

In fact, it will lead the user through one of those possble vdid peths, filtering,
whenever possible, the set of objects remaining, these objects being the most specidized
query solution so far obtained.

Note that object filtering is scattered in time. Query evduation is a process that
dternates with grammar checking on query tokens (which, in Asssted Mode are generated
upon visud events).

Thus, one cahnot say that a a certain moment dl the query is evauated a once.
There is not a unique moment for query evauation. The query solution refinement process
is done as the query is being built.

4.1.1 Syntactic Help

Being user interface embedded, the underlying grammar will have the ability to prevent
users from having bad syntecticdly formed queries. Both interface menus and buttons
assure, a every time, that the next token added to the query being synthesized, isavalid one
(one of the look-aheads of the present grammar rule).

The actud internd gtate of the parser for that grammar will be reflected in the enable-
disable gate and in the contents of the various objects being part of the visud interface
(such as menus, buttons, list panes, etc.), and so, shal severdy redtrict interface choicesto a
set of syntacticaly vaid ones.

In Asssted Mode there is a permanent interaction between the interface layer and the
parser layer, the former being controlled by the latter.

Therefore, a parser leve, the visua dtate iswell known and pre-defined.

The user interface layer ddivers to the parser ainteractively synthesized query, thet is,
aquery that was synthesized at the cost of mouse sdections and other events that resulted in
the addition to the query of atoken (or aset of tokens).

Badcdly, every interactive event leads to acdl to the parser, but only asmal portion
of these events will make the parser to filter the present temporary solution set.

INESC 2361 IQsFunctional Specification & Architecture 6



There are some circumstances under which repestedly adding a token to the query
being submitted to the parser does not make the parser to filter the present set of AOIDS.
For instance, by repeatedly clicking a button that presents a list of available AoG atributes
being visible, and by adding the corresponding token(s) to the query it will have the same
effect asasngledlick!

Even in the case that no repeated tokens are introduced in the query (one after
another), there could be no filtering of objects. For ingtance, in the previous example,
filtering does not happen until a par (AoG attribute selected, AOG attribute value
selected) is provided.

Thus, the parser, has two fundamentd tasks.

- to sat the next dtate of the user interface layer (syntactic control), even in the case
of redundant tokens being added to the synthesized query;

- tofilter the objects selected so far, whenever that is possible (semantic selection);

Assuming that, in the case of a successful finished query, we would like to preserve
the synthesized text of that query, one can ask if is it worth to preserve dl the query text,
once only asmdl portion of the query received by the parser is rlevant in terms of objects
filtering.

Why not keep only the non-redundant part of the query, which by it would be enough
to obtain exactly the same results if submitted to the parser?

That's why dthough the parser receives a query from the interface layer, it dso
synthesizes its own. Every time the parser does a filtering, the relevant tokens are added to
an internaly synthesized query, thet is, two queries coexist during the same Assisted Mode
sesson:

- the one provided by the visud layer, possibly with redundancies,

. the one synthesized so far by the parser; if desired, this query can be later reused
for providing exactly the same results asits counterpart, but in an efficient way;

We shdl cdl thislater form aMinimal Efficient Query.

Later, when presenting Batch Mode and the History as an integrator between the
Asssted Mode and the Batch Mode, the role of these efficient forms will become quite
Clear.

For now, it is manly important to retain that as a result of a successful query
resolution via Asssted Mode, its Minima Efficient Query verson will be kept somewhere,
possibly for afuture reuse.

4.1.2 Semantic Help

INESC 2361 IQsFunctional Specification & Architecture 7



In Assisted Mode, 1Qs will never synthesize queries with syntactica errors.

Another kind of possble errors are the semantic errors.

Semantic erors, dl aone, imply empty solutions, despite the fact that in syntactica
terms everything may be correct.

Therefore, a good semantic help is essentid as a complement to a syntactica
assistance.

From the 1Qs viewpoint, a semantic error occurs whenever a syntecticadly well-
formed query produces an empty set of solutions.
The reasons for thiskind of failure could be, among others.

1. there isn't redly nothing in the repogitory thet fits the provided description;
2. abad path to the intended objects was specified;

3. the objects are actualy there, even the path is correct, but some of the description
provided for the objects does not suit them;

In afully implemented Semantic Asssted Mode, users would expect to choose paths
or descriptions from the user interface, matching at least one of the objects filtered so far.
About such an assistance degree, one could say that "what you choose is what you get”.

It would be impossible to choose avaue of a cartain attribute from alist pane if there
were no objects that had that vaue for that attribute. In fact, that attribute would have been
prevented from having access to the interface layer if there wasn't a least one object with a
well-defined vaue for that attribute,

The enable and disable control of every visud feature will, then, obey to asmple but
grict rule

IF (the next visual state supports this visual feature AND the objects filtered so
far match at least one of the items of that feature)

THEN enable and refresh that feature;

ELSE disableit.

For ingance, if the next visud state supports a button that when pressed makes alist
pane with names of attributes available, then, only if a least one of the objects filtered so far
has a non empty vaue for at least one of those attributes, should the button be enable.

Following this scheme, the parser level prevents users, by anticipation, from teking a
wrong path by means of a strong vaidation of every available interface option in the present
state.

4.1.2.1 Redundancy

Semantic help aso reflects the way redundancy his handled.

INESC 2361 IQsFunctional Specification & Architecture 8



The process of avoiding redundancy a the semantic level consists of not repesating any
choice made before.

That is achieved by removing off the lig-panes presented in the visud layer those
items selected in a previoudy successful sub-query.

When a certan ligt-pane becomes empty, the parser level, which maintains that ligt-
pane (and every low level data structure) and controls the state of the visud layer, smply
disables that part of the interface, ensuring that every visud path accessing that visud object
will be blocked.

There are, however two dtuations where only one choice can be made, even if the
lig-panes have more than one e ement:

. Class choice: should a class beow the USR class be chosen, no more class choices
will be dlowed;

- Software Life Cycle choice: this reflects the fact that a set of objects may not
belong to more than one Software Life Cycle;

In any case, the two Stuations above a so reflect semantic conditions to be obeyed.

4.2 Batch Mode

A fully implemented Assisted Mode prevents usars little familiarized with the
repogtory information scheme from producing syntactical and semantic errors during an 1Qs
sesson.

However, such a degree of assstance may become a regtriction to those users who
do have a comprehensve knowledge of both the repository schema and the query
condruction language, and would like to make queries in a more flexible way, by using that
query congruction language.

This mode dlow users to submit to 1Qs a batch of queries and expect 1Qs to solve
them or to interrupt the solving process whenever a syntactica or semantic error occurs. In
the latter case, the user would have to correct the batch text in order to avoid the error and
submit again the batch of queriesto be solved.

Therefore, Batch Mode aso encompasses the adaptability goa, which guides not only
IQs, but dso dl the SOUR environment. The posshility that the end-user has to switch
between Asssted and Batch Mode provides a high degree of flexibility and adaptability to
different users needs.

In this way, the Batch Mode will best fit those users who adready have managed to
understand the adopted linguistic query standard.

There are two main issues relaed to Baich Mode and intimately connected with
Assisted Mode;

INESC 2361 IQsFunctional Specification & Architecture 9



. the language that supports the query description, known as the Interface Query
Language (IQL);

- the place where the sat of solutions of the solved queries are kept, known as the
History;,

INESC 2361 IQsFunctional Specification & Architecture 10



5 Interface Query Language

At this point it should be clear that a query description language is amain design issue
of the |QS SOUR sub-system.

The pseudo-naturd language supporting the Batch Mode should be compatible, with
the one behind the Asssted Mode parser. In fact, both languages should be the same, if
possible.

The reason judtifying this need is as follows: if the language used by the Asssted
Mode parser to synthesize queries and the language on which Baich Mode queries are
based on are both the same, then it will be possible to the Batch Mode to re-solve aquery
visudly synthesized in Asssted Mode, as while as a communication mechanism is provided
between the two operation modes. As we shdl see, the History provides such a mechanism.

A common language and a Higtory are, thus, the main features upon which a good
integration between the two operation modes will be achieved. Besdes, such an integration
will make possble to share other features of both modes, providing for a clean
implementation and easy maintenance.

Having the Batch Mode and the Asssted Mode parser to share a common language
has an obvious, but important, consequence: the set of queries one can submit to the Batch
Mode isequad to the set of synthesizable queries by the Assisted Mode parser!

However, during Syntactic Help discusson we have stated that those synthesized
queries are Minimd Efficient forms. Thus, these are the forms the Batch Mode queries must
obey. Redundant forms are smply not dlowed in Batch Mode.

Remember that redundancy was introduced in Assisted Mode as a consequence of
the behaviour of the visud layer: sometimesit is possible to use avisud fegture, repeatedly,
without any object filtering having place. That cannot not happen in Batch Mode (in fact,
those visual features aren't accessble in Batch Mode but their use could be smulated by
introducing the right tokens in the right places when writing the query text).

The complete set of non-redundant synthesizable queriesin Asssted Mode, and thus,
the set of valid possible queries one can submit to a Batch Mode resolution is known as the
Templates (or Minimal Efficient Forms) -- see Figure 2.

The Interface Query Language (or 1QL) is the language on which the Templates are
based on. Thus, Templates are the syntacticaly vaid combinations of the various tokens of
the lQL.

There are two groups of Templates.

- the s0 cdled Kernel templates (see Figure 2.1);

- the reuse based (non-Kernel) templates (see Figure 2.2).

INESC 2361 IQsFunctional Specification & Architecture 11



NUMBER TEMPLATE1 GET ALL CLASS="cl ass" <AttributeDescriptionl>*
NUMBER TEMPLATE2 GET ALL CLASS="cl ass" <AttributeDescription2>*

NUMBER TEMPLATE3 GET ALL CLASS="cl ass" <AttributeDescriptionl>*
[ AND I'S COMPOUND
<ConpoundDescri pti on>* ]

NUMBER TEMPLATE4 GET ALL CLASS="cl ass" <AttributeDescriptionl>*
[ AND BELONG TO COMPOUND
<ConpoundDescri ption>* ]

Figure2.1- IQL Kernel Templates

NUVBER TEMPLATE5 <Query> [ LINKED BY "relation" [ WTH <Query> ] ]

NUVBER TEMPLATE6 <Query> [ LINKED TO <Query> [ BY "relation" | ]

NUVBER TEMPLATE7 <Query> [ OR <Query> ]

NUMBER TEMPLATES8 <Query> [ RESTRI CTED TO <Attri buteDescriptionl>+ ]

Figure 2.2 - IQL non-Kernel Templates

Kernel templates are those templates that don't reuse the set of results from previous
solved templates. In that sense, they may be called atomic or kernel.

On the other hand, a second group of templates is exclusvely or partialy based on
that reuse. Note that both Kernel and non-Kernel templates can be reused (whet realy
mattersis their associated set of objects).

However, this reuse suffers from certain redtrictions:

one template cannot make a reference to himsdlf, i.e, references must not be
recursive;

references cannot be made to templates not yet solved.
In fact, the firgt redtriction turns out to be a particular case of the second, but it's
important enough, by itsdlf, to be pointed out separately.
Concerning the second redtriction, the nature of a reference to a solved query is

intimately connected with the History structure.

Figure 2.3 shows some shared definitions of Kernel and non-Kernel Templates.

INESC 2361 IQsFunctional Specification & Architecture 12




The meaning of each Templateisasfollows

. Templatel: dlows for the search of objects of a certain class, by describing their
generic or class atributes and facets; in the case of a facet, besdes aname and a
value, a conceptud distance must aso be provided;

. Template2: extends Templatel by dlowing the specification of one or more
Software Life Cycle Phases or of a Software Life Cycle (SLC); having filtered by a
certain Software Life Cycle implies that no more Software Life Cycle should be
specified because one object can only have one Software Life Cycle associated;
a9, in this case, choosing later a Phase cannot be done because no additiond
filtering would occur; thisis due to the fact that the ERA layout does not provide for
associaing an object to a Phase; in particular, if a Phase is chosen even before a
SLc, this implies refining the present query solution by the SLCs containing thet
Phase,;

. Template3: same as Templatel but adlowing to chose the objects being
compounds, in which case the refinement by one or more characteridtic relaions
becomes possible; searching by a certain characterigtic rdation, implicitly implies, in
turn, filtering again, because only clusters have characterigtic relations associated
and so clusters are selected from the set of compounds,

. Templated: extends Templatel by making possible to characterize the compound
objects containing the ones selected so far; from these primitive objects, only the
ones beng members of the compounds matching the provided compounds
description (possibly involving the specification of one or more characteristic
relations) are kept;

- Template5: dlows for the filtering of objects from a previoudy solved query, kept
in the Higtory, by consdering them as sources of a certain relation, whatever are
the snks, optionally, a set of sanks can be specified, again by referencing a set of
objects associated with an History query;

- Template6: amilar to Template5 but a set of hypothetical sinksis considered fird,
and the refinement by ardation eventudly follows,

. Template7: dlows for the ORIng of the objects associated with two History
queries,

- Template8: dmilar to Templatel, except that the initid set of objects to be

characterized is not retrieved from a specified class, but from a History query; this
dlowsfor later refinement of a previoudy solved query, kept in the History;

INESC 2361 IQsFunctional Specification & Architecture 13



<AttributeDescriptionl> = AND ( <GenDescp> | <FacDescp> | <AttDescp> )

<GenDescp> = GENNAME="gennanme" AND GENVALUE="genval ue"

<FacDescp> = FACNAME="f acnhame" AND FACVALUE="f acval ue" AND
CONCEPTDI ST>=<Di st >

<At t Descp> = ATTNAME="att name" AND ATTVALUE="attval ue"

<AttributeDescription2> = ( <AttributeDescriptionl>* (AND <PhaDescp>)* )*
[ AND <Sl cDescp> <AttributeDescriptionl>* ]

SLCNAME="s| cnhanme"

PHANAME=" phaname"

<Sl cDescp>
<PhaDescp>

<ConpoundDescprition> = <Attri buteDescriptionl>* (AND <Crl Descp>)*
<AttributeDescriptionl>*
<Cr| Descp> = CRLNAME="cr | nanme"

<Di st > = NUMBER%
<Query> = #NUMBER

NUMBER = [0-9] +

Figure 2.3 - Kernel and non-Kernel Templates common definitions

5.1 1IQL grammar(s)

The previous discussion pointed out the advantages of having a shared query
description language used by both Batch and Assisted modes.

However, the compatibility between both languages is obtained a the cogt of
eliminaing the redundancy (and possibly some incompleteness?) introduced by the Visud
Layer during the query phrase congruction, in Assisted Mode. Remember that, in Asssted
Mode, the parser has to synthesize a Minimal Efficient Form from the received query.

It is then clear that, in Asssted Mode, to be able to recognize the query phrases
visudly synthesized, the parser in charge mugt follow a grammar with dightly different rules
than the parser taking care of Batch Mode. Those rules are the ones dlowing for recognition
of the redundancy and incompleteness. These Situations are not acceptable in Baich Mode,
thus resulting in asmpler grammar for that operation mode.

In lexicd terms nothing changes between the two grammars, i.e., the set of vdid
tokens (the vocabulary) remains intact. Only the rules to combine them are dightly more
flexible in Asssted Mode, due to the impact of the Visud Layer (keep in mind, however,
that the Asssted Mode parser dills synthesize interndly a Minimal Efficient Form to
provide for compatibility with Batch Mode).

2|n this context, incompletness means that, althought not redundant, some of the tokens being
part of the query phrase won't imply any filtering; thus, there's something missing (incompletness) in
the query phrase to make filtering ocur. See also section 4.1.1 Sintatic Help.

INESC 2361 IQsFunctional Specification & Architecture 14




However, the differences between the two operation mode grammars are not purely
gyntactica ones. The semantic actions executed when the same token or set of tokens is
recognized may vay from mode to mode These differences lie not only in the
implementation of the semantic action. They may even occur a the placement of the
semantic actions among the various tokens in the rules.

When building the grammar for each operation mode, the placement of the calsto the
semantic actions in the rules definition, reflects much of the behaviour philosophy of the
interface layer.

In Assisted Mode grammar, for ingtance, dl semantic actions are termina3, that is, the
parser is not allowed to recognize a set of tokens, execute the respective semantic action,
and next try the matching process again. In Asssted Mode, dmost every visud event implies
adding a token to the query phrase under congtruction, and every time that happens, the
parser is caled in order to recognize the complete query phrase and execute one termind
semantic action: the one resulting from having the new token(s) added to be the last oneg(s)
of the production rule. The reason for this kind of behaviour is convenience in
implementation terms. to expand the grammar in a stair-fashion (see Appendix A) and to
cal the parser every time a new token enters the present Visud Layer query phrase is much
easer than keegping the parser in background, always trying to recognize something vaid.

This drict dternation between adding a token(s) to the query phrase, let the parser
recognize the new token(s), execute the respective semantic actions and immediately return
the control to the Visua Layer, does not happen in Batch Mode. In Batch Mode, query
phrases are supposed to be complete (and not under construction) when ddivered to the
parser, and thus, semantic actions can be placed anywhere among the rules of the grammar.
Thisis areason why a Batch Mode grammar is Smpler than an Aide Mode one.

Having two grammars (each one for a specific operation mode) one could naturaly
conclude for the need of two parsers.

The number of parsers actudly needed is one, serving both operation modes, and thus
following a unique grammar resulting from the union of both operation mode's grammars.

The reason lying behind this is convenience: being automaticaly generated and due to
many smilarities of their grammars, both parsers share many common data structures and
functiondities; this Stuation would rise many conflicts when trying to gather both parsersinto
one single code module; the advantages of automeatic code generation would soon be diluted
by the effort spent in the mix process.

S0, the solution is to join the grammars by moving up ther roots (the firg rule of the
grammar) to a common level (see Figure 3.1 and Figure 3.2) and thus alowing only one
parser, serving both grammars, to be generated.

A complete forma description of the common grammar is included in the Appendix
A.

6 The History

The Higtory isthe main integrator mechanism between the two Qs operation modes.

3They are the rightmost symbol in arule description.

INESC 2361 IQsFunctional Specification & Architecture 15



In abgtract terms, the Higtory is a data structure that implements a set of pairs of the
format (query text, set of objects solving the query) -- see Figure 4.

/* root of the Batch Mode grammar; semantic actions omtted*/
batchlqs ® batchlgs batchTenpl atel

bat chl gs batchTenpl at e8
bat chTenpl at el

bat chTenpl at e8
e

/* remaining Batch Mode grammar rules omtted */

/* root of the Assisted Mdde granmar; senmmntic actions omtted*/
assistlgs ® assistTenplatel

| ...
| assistTenpl at e8

/* remaining Assisted Mode grammar rules omtted */

Figure 3.1 - Before joining Batch and Asssted Mode grammars

/* common Batch and Assi sted node grammar root */
lgs ® batchlgs
| assistlgs

/* same as contents of Figure 3.1 */

Figure 3.2 - After joining Baich and Asssted Mode grammars

History © { ( tq, { 017, -~ oqp} ), --.v Cty, { 0Oj1s ---s Ojm} )}
where t; ©° text of the ith query

and oj p ° nt h obj ect solving the ith query

Figure 4 - Structure of the History

During an Asssted Mode |Qs sesson, aHigtory is built based on the Minimd Efficient
Queries of dl the successful solved queries.

It is important not to lose that History: think of one user wanting to proceed with the
session later, preserving the work done during the previous sesson.

INESC 2361 IQsFunctional Specification & Architecture 16




This capability introduces a curious problem: it's nice to save the Higtory for future
reuse, but what hgppens if meanwhile the repository contents changes in such away that the
st of objects that claim to solve each query in the History are no longer the vaid solutions?

Thus, it is of no use to save the complete Higtory: only the text of the queries is of
interest because there is no guarantee at dl that the same solutions to a query apply between
QS sessons.

Every time aHigtory isloaded, it must be re-solved, query by query.

The Batch Mode it's ided to perform this task: one can load the text part of the
Higtory and let the Batch Mode take care of solving it. After that, the History reflects the
true actud state of the repository and, if wanted, a swapping to the Asssted Mode can be
performed.

Swapping between Assisted Mode and Batch Mode should now be atrivial task:

. auser in Asssted Mode, no matter the origin of the present History, should be able
to change to Batch Mode and, once there, to edit the History (modify it by hand)
or to load another Higtory, replacing the actud or joining them;

. auser in Batch Mode, no matter the origin of the present History, should be able to
change to Asssted Mode and, once there, to access the History in a totdly

transparent way;
Thus, the History serves two main purposes.

. totd integration between Batch Mode and Asssted Mode: the Higtory dlows
coherent swapping between Assisted Mode and Batch Mode, because the data
dructure implementing which sores the Higtory is shared between the two
operation modes.

- in conjunction with Batch mode, implements a minimum level of adaptability by
dlowing theretrievad of work donein previous 1Qs sessions.

A find note concerns the way how queries are referenced once kept in aHigtory.

The easest way (and the one assumed) is to use the arriva order to the History: the
nth query is the fdh query arived to Higtory and thus any non-Kernd queries referencing
others must assume that rule. That's why vaid references are only those behind the arrival
order of the query presently being solved.

The nonKerne templates (see Figure 2.2) use a clear notation to make those
references:

<Query> = #NUMBER

NUVBER = [0-9] +

Figure 5 - Syntax of History references

INESC 2361 IQsFunctional Specification & Architecture 17



Note that during query resolution, a nontKernel query referencing a History query
doesn't care about his text component. In evauating a query what really matters are the
objects associated; they are the ones to be reused, not the query text.

Also, there is an important issue related to what happens when joining histories.
Congder the example of Figure 6.

One could ask what happens when during Batch Mode an attempt is made to solve
the imported Higtory. After al, references made in the loaded History could be correct in
the context of tha Higtory, but certainly aren't in the globd context of both Histories (the
actual one and the loaded ). For instance, the query #2 of the loaded History reuses queries
#0 and #1 of that History, not of the present one.

/* History for the present | QS session*/

#0 TEMPLATE1l GET ALL CLASS = "X"
#1 TEMPLATE5 #0 LI NKED BY "linknane"

/* Loaded History of an old I QS session */
#0 TEMPLATE1l GET ALL CLASS

#1 TEMPLATE1l GET ALL CLASS
#2 TEMPLATE7 #0 OR #1

v
" zn

Figure 6 - Joining the queries of two Higtories

A possible solution to these problems is not to re-solve the actua History (provided
nothing changed in the repository) and let the Batch Mode handle only the loaded one.

If a query from the loaded History is successfully solved, then it is added to the actua
Higtory, dl references being converted from locd to globa ones.

During resolution of the loaded Higtory any time the parser recognizes the beginning of
a query, it checks to see if his ordering number is correct in the loca context of the loaded
Higtory. If s0, it continues the solving process. If the query is non-Kernel there will be locd
references to other queries of the loaded History. If those references are vdid, i.e, they
point to previoudy solved queries of the loaded Higtory, then they are converted to globa
references (remember that loca solved queries enter the globd History) in order to access
their set of associated objects.

At the end of this process, if everything went fine, then the loaded History has seen all
hisloca references converted into globa ones!

For the previous example, the final History, resulting from the union of both the actua
and the loaded ones, should be:

/* History for the present |1 QS session*/

#0 TEMPLATE1l GET ALL CLASS = "X"
#1 TEMPLATE5 #0 LI NKED BY "linknane"
#2 TEMPLATE1l GET ALL CLASS = "Y"

INESC 2361 IQsFunctional Specification & Architecture 18




#3 TEMPLATE1l GET ALL CLASS = "Z"
#4 TEMPLATE7 #2 OR #3

Figure 7 - Result of Higtories union

Part I11
7 1QS data structures design

The choice of the best suited data structures to support the most relevant design
features of 1Qsisacriticd issue

A good palicy isto integrate dl those relevant data structuresin arecord. That should
alow an easy access and management control.

Which data to put into the record depends upon which data is relevant or considered
enough to define the dtate of the user-interface. Note that the record does not integrate any
low-level parser automatic generated control data structures, i.e, those data Structures
exclusvely concerned with token recognition. Those are details that were left on the behalf
of automatic generated parser code. Of course one cannot left the record only with visud
layer related items. There must be a place for the History, the set of objects presently
solving the query so far synthesized, the text of the query itsdlf, etc.

An abstract representation of arecord used for keegping the most relevant information
concerning the present user-interface and queries resolution state, could be:

Hi ghLevel Parser State ° {

QS ©° { objects presently solving the query },

QSC ° { objects being conpounds },

QSV ° { generic attributes values or class attributes val ues
or facets values },

Query ° "text of the synthesized query until present noment",
Hi story © history for the actual igs session - see Figure 3,

VBState © { flags controlling Enabl e/Di sable state of Visual Basic
interface features },

AOGAt tri bs ©
FACAttribs ©
CLAAttribs °
SLCNanes °
PHANanmes °
CRLNanmes °
LNKNanmes °

avai |l able AOG attributes to choose from},

avai |l able facets to chose from},

avail able class attributes to choose from},
avai |l abl e software life cycles to choose from},
avai |l abl e software life cycle phases to choose from},
avai |l abl e characteristic relations to choose from},
avail able links to choose from},

e N e M e e Bt M M)

Bat chOn ° flag sensing batch node activation,

RM © { copy of QS exclusively to be used by Result Manager },

Next Local Hl ndex ° next valid history index in a |local context

}

INESC 2361 IQsFunctional Specification & Architecture 19




INESC 2361

Figure 8 - High levd 1Qs parser state

IQsFunctional Specification & Architecture

20



IQs is an hybrid tool, made at the cost of two different technologies: Visud Basic
Professond 3.0 taking care of the user-interface and a C DLL module accessng the
repository database in order to solve queries.

The control of the 1Qs interface reflects the integration of these two technologies.
That's why the vBsState field does not take care totdly of the control of the Visud Layer.
Ingtead, many details are left to the Visuad Layer (Visud Basc layer handling the user
interface). As far as the vBState fidd is concerned, just the deterministic behaviour of the
user interface is considered.

One thing is to decide what information to preserve. Another one is to choose
physcd layouts implementing the abstract descriptions. That's when convenience and
efficiency may conflict between each other.

For the sake of preserving this discusson far from implementation details, for now,
one needs only to know that the main design decison concerning the implementation of the
previous High Level Parser State was to use Dynamic Arrays to implement sets.

In 1Qs context, a Dynamic Array is asfollows

Dynamic Array °©° { index, { information itenms } }

Figure 9 - Structure of aDynamic Array

A Dynamic Array is nothing more than a structure with two fidds.

1. an index reflecting the actua number of objects contained in the array;

2. the actud array containing the set of objects.

The index component has some basic properties:

- index £ -1 implies an empty array, that is, the array fiedd is discarded;

- index + 1 = number of objectsinthe array, aslong asindex 3 0.

This ample gructure dlows a quick and clean implementation of a sub-module of
basc st operations such as CopySet, SetDifference, Setintersection, SetUnion,

MakeSet, etc., which are enough to shidd 1Qs APl man functions from many low-leve
details concerning manipulation and filtering of objects during query resolution.

INESC 2361 IQsFunctional Specification & Architecture 21



8 IQS architecture

Visual Layer
Visual State
History
BATCIH mode AIDELQ} mode
Parser
State
| IQL Parser |
| Semantic Actions |
| 1IQS API |
I Result Manager User Interface Services |
1] ¥ ¥
| ERA CTS | LTS |

Figure 10 - Intdligent Query System Architecture

Figure 10 depicts the main internd parts of the 1Qs subsystem as well as the rdations
involved among them.

On the basis of the contents of Figure 10 it is possible to quickly describe the overal
behaviour of 1Qs.

On Assiged Mode, the Visua Layer (Visud Basic Professond 3.0 implemented)
reacts to interface events (mouse clicks, sdlections, etc.) by building a query phrase and then
delivering it to the 1QL parser. On Batch Mode, a"job" or "batch” of queriesis submitted to
the same QL parser. That's why Figure 10 presents two ways of caling the Parser Layer,
each one following a specific behaviour4.

Mogt of the times, the semantic actions specified to be executed whenever a
successful syntactical recognition of the query phrase(s) occurs, will be based on 1Qs AP
sarvices (in turn, this services are implemented on top of other SOUR modules and
SOURLIB).

4see also section 5.1 1QL grammar (s).

INESC 2361 IQsFunctional Specification & Architecture 2



Asareault of those semantic actions, the present Parser State will be modified.

The Parser State keegps information about the query presently being synthesized (text and
objects associated - the temporary solution), the Higtory, the next state of the Visual Layer
(Visud State) depending on the success or insuccess of the semantic action, and other
interna management structures®.

Ultimately, the Visud Layer reflects the changesin the Parser State by retrieving some
criticd interface information (the Visud State). This dependency of the State of the Visud
Layer on alow-level control mainly occursin Assisted Mode.

Every time a swap occurs between Asssted Mode and Batch Mode, the History data
gructure should remain intact, if one desires to preserve and reuse results from previous
successful queries.

The IQL Parser is the automatic generated parser implementing the common grammar
for both Assisted and Batch Modes.
Bdlow IQs AP, only the modules providing services to IQs are considered.

Sfor an high level abstract description of the parser state recall section 7 1QS data structure
design.
6refer to section 5.1 1QL grammar () for more details about thisissue.

INESC 2361 IQsFunctional Specification & Architecture 23



Part IV

9 Final Remarks

This document presented INESC's proposal for SYSTENA about the functiond
specification of the 1Qs subsystem of the SOUR software system.

This part of the document briefly skims through a few topics which may be of interest
concerning the discussion and upgrading of the solution found in order to implement 1Qs.

9.1 Interaction with Conceptualizer

IQs can be usad as a tool plugged with Conceptudizer in order to make possible to
reconceptualize or delete a set of objects, given by acdl to an I1Qs query. If it'sdesired to
apply the same action to objects with a common characteristic (e.g. an attribute, a facet
term, etc.), acall to IQs provides anaturd and linguigtic based way of doing that.

9.2 Interaction with Comparator & Modifier

Asdaed in [CM-1.4 1993] logica AOs may be used as "search templates' providing
IQs with a set of objects which can be latter refined by a future query. Comparator &
Modifier can therefore be plugged to 1Qs in order to make possible to have queries using
logical AOsfor AO-repository browsing.

9.3 Adaptable Ul

There are severd issues to be congdered here, dthough the overdl ideais Smply to

ingruct the machine on how to provide "good hints' for incomplete information:

- A sami-Assisted Mode could be suggested, providing the end-user the capability of
switching on and off the semantic on-line assstance.

- A Higtory can be saved in afile, making possible to the user to load a previousily
made batch of queries.

- Proximity driven list panes --- this could be applicable to facet vaues by presenting
the CTs-closure of terms ordered by the proximity measure.

- uUser-adgptable terminology --- the idea is to endow each user-group with aloca
thesaurus mapping the group's own terminology to the standard one, cf. [Larsen
&Yager 1992]. Such a thesaurus could actudly be built implicitly by a "learning
process’ which would record pairs t,t" where t is the firg term input by the user
and t' ishisher find choice after an eventud CTs-browse.

INESC 2361 IQsFunctional Specification & Architecture 24



References

CM-1.4 1993
Comparator & Modifier. Functiond Specification & Architecture. Verson: 1;
Revision: 4; Workpackage WP2B of Collaboration Offer by INESC.
CON-2.01993
Conceptualizer. Specifiche da Requigti - Architecttura Versgon: 2; Revidon: 0;
Author: R. Bruniati, November 1993.
CT1s-1.4 1993
Concept/Thesaurus Subsystem. Specifiche da Requidti - Architettura - Note di
implementazione. Verson: 1; Revison: 4; Authors Brunidti R., Marano D. April
1993.
ErA-1.2 1993
Easy Repository Access. Specifiche dal Requigti - Architettura. Verson: 1; Revison:
2, Author: Brunidti R., April 1993.
ErRA-3.521994
Easy Repository Access. APl Reference. Verson: 3; Revison: 5a Author: R.
Brunidti, June 1994.
Larsen & Yager 1992
Larsen &Yager 1992 Larsen H.L., Yager R.R. The Use of Fuzzy Relational
Thesauri for Classificatory Problem in Information Retrieval and Expert
Systems. |EEE Trans. Syst.,Man, Cybern, SMC-23(1):31-41.
SYSTENA &Sss1993
Requirement Specifications for Conceptualizer, 1QS Comparator and

Modifier. Annex of Collaboration Offer by INESC, April 1993.

INESC 2361 IQsFunctional Specification & Architecture 25



Appendix A - IQL grammar

The following is a BNF based description of the Interface Query Language grammar.
Thisforma description omits semantic actions details. Ingtead, the notation { . . . } isusedin
order to show where a cdl to a semantic action would take place if the parsng process
succeeded.

Remember that this grammar result from joining an Asssted Mode suited grammar
and a Batch Mode one’. For each Template the rules relative to each mode are presented.

Notice dso the stair-fashion assumed by the rules concerning Assisted Mode,
resulting from the dternation between Visua Layer and Parser Layer control of the IQS.

/* HYBRI D CRAMMAR FOR BATCH MODE AND ASSI STED MODE | QL */

/* common Batch and Assisted node grammar root */
lgs :: bat chl gs
| assi stlgs

/* batch node branch */

bat chlgs:: bat chl gs bat chTenpl atel
| bat chl gs bat chTenpl at e2
| bat chl gs bat chTenpl at e3
| bat chl gs bat chTenpl at e4
| bat chl gs bat chTenpl at e5
| bat chl gs bat chTenpl at e6
| bat chl gs bat chTenpl at e7
| bat chl gs bat chTenpl at e8
| bat chTenpl at el
|

|

|

|

|

|

Lot Nt Wt et W W W W)
[ N VA I S W S S W )

bat chTenpl at e2
bat chTenpl at e3
bat chTenpl at e4
bat chTenpl at e5
bat chTenpl at e6
bat chTenpl at e7
bat chTenpl at e8

Lot Nt Wt et W W W W)
[ N VA I S W S S W )

/* assisted node branch */
assistlqgs:: assi st Tenpl atel
| assi st Tenpl at e2
| assi st Tenpl ate3
| assi st Tenpl at e4
| assi st Tenpl at e5
| assi st Tenpl at e6
| assi st Tenpl at e7
| assi st Tenpl at e8
|

|

CHECK {...}
ABORT {...}
/* some assisted and batch node comon rul es */
ListOfFIDENT :: IDENT {...}
| Li st OF I DENT I DENT {...}
A TR Tenpl at el BATCH node rule------------------ */

Trefer to section 5.1 1QL grammar (s).

INESC 2361 IQsFunctional Specification & Architecture 26



bat chTenpl at el D NUMBER {...} TEMPLATEl {...} GETALLCLASS =
"ListOF I DENT" {...} batchTenpl atell

bat chTenpl atell s e
| AND bat chAttrDesc

bat chAtt r Desc s bat chGenDesc bat chTenpl atell
| bat chFacDesc bat chTenpl atell
| bat chAtt Desc bat chTenpl atell

bat chGenDesc s GENNAME {...} = "ListOIDENT" {...} AND
GENVALUE = "ListOf I DENT" {...}

bat chFacDesc s FACNAME {...} = "ListOIDENT" {...} AND
FACVALUE = "Li st Ol DENT" AND
CONDI ST >= NUMBER {...}

bat chAt t Desc D ATTNAME {...} = "ListOFIDENT" {...} AND
ATTVALUE = "ListOf I DENT" {...}

A Tenpl atel ASSI STED node rule----------u-uonn-- */

assi st Tenpl atel s TEMPLATEL {...}

| TEMPLATE1 GETALLCLASS
| TEMPLATE1 GETALLCLASS
AttrDesc

"Li st OF I DENT" {...}
"Li st OF | DENT" AND

AttrDesc - At tr Name

At t r NameAnd AttrDesc

At t r NaneEql d

At t r NaneEql dAnd AttrDesc

At t r NaneEql dAndAt t r Val ueEql d

At t r NaneEql dAndAt t r Val ueEql dAnd AttrDesc

At t r Nanme s GENNAME {...}
| FACNAME {...}
| ATTNAME {...}

At tr NaneAnd :: GENNAME AND
| FACNAME AND
| ATTNAME AND
Attr NaneEql d: : GENNAME = "ListOf | DENT" {...}
| FACNAME = "ListOf I DENT" {...}
| ATTNAME = "ListOf I DENT" {...}
At t r NaneEql dAnd: : GENNAME = "Li st Of | DENT" AND

| FACNAME = "ListOf | DENT" AND
| ATTNAME = "ListOf | DENT" AND

At t r NaneEql dAndAt t r Val ueEql d: : GENNAME = "Li st Of | DENT" AND GENVALUE
= "ListOFI DENT" {...}
| FACNAME = "ListOf | DENT" AND FACVALUE
= "Li st Of | DENT" AND CONDI ST
>= NUMBER {...}
| ATTNAME = "ListOf | DENT" AND ATTVALUE
= "ListOF I DENT" {...}
At t r NaneEql dAndAt t r Val ueEql dAnd: : GENNAME = "Li st Of | DENT" AND

INESC 2361 IQsFunctional Specification & Architecture 27



bat chTenpl at e2

bat chTenpl at e22

bat cht 2At t r Desc

NUMBER {...} TEMPLATE2 {...} GETALLCLASS
"ListOfF I DENT" {...} batchTenpl ate22

e

GENVALUE = "ListOf | DENT" AND
FACNAME = "ListOf | DENT" AND

FACVALUE
CONDI ST >

"Li st Of | DENT" AND
NUMBER AND

ATTNAME = "ListOf | DENT" AND

ATTVALUE

AND bat cht 2At t r Desc

bat chGenDesc
bat chFacDesc
bat chAt t Desc

bat chTenpl at e22
bat chTenpl at e22
bat chTenpl at e22

"Li st Of | DENT" AND

bat chSl cDesc bat chTenpl atell
bat chPhaDesc bat chTenpl at e22

bat chSI cDesc SLCNAME {...} = "ListO I DENT" {...}

bat chPhaDesc

PHANAMVE {...} = "ListOfI DENT" {...}

A R Tenpl at e2 ASSI STED node rule------------------
assi st Tenpl at e2 TEMPLATE2 {...}
| TEMPLATE2 GETALLCLASS =

| TEMPLATE2 GETALLCLASS
t 2At t r Desc

"ListOf I DENT" {...
"ListOf | DENT" AN

t 2Attr Desc At t r Name

At t r NanmeAnd t 2Att r Desc

At t r NaneEql d

At t r NaneEql dAnd t 2Attr Desc

At t r NaneEql dAndAt t r Val ueEql d

At t r NaneEql dAndAt t r Val ueEql dAnd t 2Attr Desc
Sl cDesc

PhaDesc

Sl cDesc : SLCNAME {...}

| SLCNAME AND t 2AttrDesc

| SLCNAME = "ListOf I DENT" {...}

| SLCNAME = "Li st Of | DENT" AND t 2AttrDesc
PhaDesc : PHANAME {...}

| PHANAME AND t 2AttrDesc
| PHANAME = "Li st Of | DENT"

| PHANANE

{...}
“Li st OF | DENT" AND t 2At t r Desc

bat chTenpl at e3 NUMBER {...} TEMPLATE3 {...} GETALLCLASS

"Li stOfF I DENT" {...} batchTenpl ate33

INESC 2361 IQsFunctional Specification & Architecture

}

28



bat chTenpl at e33

bat chTenpl at e333
bat chTenpl at e3333

bat chCAt t r Desc

bat chCr | Desc

assi st Tenpl ate3

At t r DescBef oreC

e
AND bat chAttrDesc bat chTenpl at e333
AND | SCOVPOUND {...} batchTenpl at e3333

e
AND | SCOVPOUND {...} batchTenpl at e3333

e
AND bat chCAttr Desc

bat chGenDesc bat chTenpl at e3333
bat chFacDesc bat chTenpl at e3333
bat chAtt Desc bat chTenpl at e3333
bat chCr| Desc bat chTenpl at e3333

CRLNAME {...} = "ListOfI DENT" {...}

TEMPLATE3 {...}
TEMPLATE3 GETALLCLASS
TEMPLATE3 GETALLCLASS
AttrDesc

TEMPLATE3 GETALLCLASS "Li st OF | DENT" AND
AttrDescBeforeC | SCOWPOUND {. ..}
TEMPLATE3 GETALLCLASS = "ListO | DENT" AND
AttrDescBef oreC | SCOVPOUND AND CAttr Desc
TEMPLATE3 GETALLCLASS = "List O | DENT"

AND | SCOVPOUND {...}

TEMPLATE3 GETALLCLASS = "List O | DENT"

AND | SCOMPOUND AND CAttr Desc

"Li st OFI DENT" {...}
"Li st OF | DENT" AND

At t r NameAnd

At t r NameAnd AttrDescBeforeC

At t r NaneEql dAnd

At t r NaneEql dAnd AttrDescBeforeC

At t r NaneEql dAndAt t r Val ueEql dAnd

At t r NaneEql dAndAt t r Val ueEql dAnd Attr DescBef oreC

CAttrDesc - At t r Nane

bat chTenpl at e4

INESC 2361

At tr NameAnd CAttrDesc

At t r NaneEql d

At t r NaneEql dAnd CAttr Desc

At t r NaneEql dAndAt t r Val ueEql d

At t r NaneEql dAndAt t r Val ueEql dAnd CAttr Desc
CRLNAME {...}

CRLNAME AND CAttrDesc

CRLNAME = "ListOf I DENT" {...}

CRLNAME = "ListOf | DENT" AND CAttrDesc

NUMBER {...} TEMPLATE4 {...} GETALLCLASS =
"ListOF I DENT" {...} batchTenpl ate44

IQsFunctional Specification & Architecture 29



bat chTenpl at e44

bat chTenpl at e444

assi st Tenpl at e4

bat chTenpl at e5

bat chTenpl at e55

bat chTenpl at e555

assi st Tenpl at e5

bat chTenpl at e6

bat chTenpl at e66

bat chTenpl at e666

assi st Tenpl at e6

INESC 2361

e
AND bat chAttrDesc bat chTenpl at e444
AND BELONGTOCOMPOUND {...} batchTenpl at e3333

e
AND BELONGTOCOMPOUND {...} batchTenpl at e3333

TEMPLATE4 {...}
TEMPLATE4 GETALLCLASS
TEMPLATE4 GETALLCLASS
AttrDesc

TEMPLATE4 GETALLCLASS "Li st OF | DENT" AND

At t r DescBef or eC BELONGTOCOMPOUND {. ..}
TEMPLATE4 GETALLCLASS = "ListO | DENT" AND

At t r DescBef or eC BELONGTOCOMPOUND AND CAtt r Desc
TEMPLATE4 GETALLCLASS = "Li st Of | DENT"

AND BELONGTOCOMPOUND {. ..}

TEMPLATE4 GETALLCLASS = "Li st Of | DENT"

AND BELONGTOCOMPOUND AND CAttr Desc

"Li st OFI DENT" {...}
"Li st OF | DENT" AND

NUMBER {...} TEMPLATE5 {...} NUMBER {...}
bat chTenpl at e55

e
LI NKEDBY "ListOf | DENT" {...} batchTenpl at e555

e
W TH NUMBER {. ..}

TEMPLATES {...}

TEMPLATE5 NUMBER {. ..}

TEMPLATE5 NUMBER LI NKEDBY "Li st Of | DENT" {...}
TEMPLATE5 NUMBER LI NKEDBY "Li st Of | DENT" W TH
NUMBER {. ..}

NUMBER {...} TEMPLATE6 {...} NUMBER {...}
bat chTenpl at e66

e
LI NKEDTO NUMBER {...} batchTenpl at €666

e
BY "ListOf I DENT" {...}

TEMPLATE6 {...}
TEMPLATE6 NUMBER {. ..}
TEMPLATE6 NUMBER LI NKEDTO NUMBER {. ..}

IQsFunctional Specification & Architecture 30



bat chTenpl at e7

bat chTenpl at e77

bat chTenpl at e8

bat chTenpl at e88

assi st Tenpl at e8

INESC 2361

TEMPLATE6 NUMBER LI NKEDTO NUMBER BY
"Li st OF I DENT" {...}

Tenpl ate7 BATCH node rule------------------ */

NUMBER {...} TEMPLATE7 {...} NUMBER {...}
bat chTenpl at e77

e

OR NUMBER {...}

TEMPLATE? {...}
TEMPLATE7 NUMBER {...}
TEMPLATE7 NUMBER OR NUMBER {. ..}

Tenpl at e8 BATCH npde rule------------------ */

NUMBER {...} TEMPLATE8 {...} NUMBER {...}
bat chTenpl at e88

e
RESTRI CTEDTO bat chAttr Desc

TEMPLATES {...}
TEMPLATE8 NUMBER {. ..}
TEMPLATES NUMBER RESTRI CTEDTO At tr Desc

IQsFunctional Specification & Architecture

31



Appendix B - 1QS API

This gppendix introduces some design issues which are implementation related. A
more detailed description is provided in the Technica Reference document.

B.1 Data Types

The C data types implementing the Dynamic Array definition as Sated in section 7
(IQs data structure design) are presented in Figure 11. These C data types are very
important to the Parser State implementation because they are the ones upon which the most
important information fields of the Parser State Structure are implemented.

typedef Obj | D unsigned long int;
typedef AQ D unsigned |ong int;

/1 a set of ObjlDs
typedef struct {
I ong int index;
Obj I D FAR *obj i ds;
} OojIDIist;

/1 a set of AQ Ds
typedef struct {
I ong int index;
AO D FAR *aoi ds;
} AOD_list;

/1l a set of nanes (of attributes, facets, links, etc)
typedef struct {

I ong int index;

char FAR *nanes;
} Nane_list;

/1l a set of sets of names (of attributes, facets, links, etc)
typedef struct {

I ong int index;

Nanme_|ist FAR *|ist;
} Nane_list _I|ist;

/1l a set of values (of attributes, facets, links, etc);
/1 main diference between Nane_list is the distance field
typedef struct {

I ong int index;

i nt distance;

char FAR *info;
} Array_list;

/1l a resolved query is a pair (querytext, queryaoids) wth
/1l queryaoi ds being a set of type AOD |ist
typedef struct {
char FAR * querytext;
AO D_list queryaoids;
} Resol vedQuery;

INESC 2361 IQsFunctional Specification & Architecture 32




/1 an History is a set of resolved queries
typedef struct {

I ong int index;

Resol vedQuery FAR * queri es;
} Query_list;

Figure 11 - 1Qs C data types implementing the Dynamic Array concept.

B.2 Functions

The functions making the basic 1Qs APl are the ones in charge with retrieving objects
from the repository during query solving. They are strongly based in the use of functiondities
provided by other modules®.

int iqgsGetHierarchyAoids(AOD |ist FAR *aoid |ist,
char FAR *cl ass)

Givenacl ass name, thisfunction putsin aoi d_1 i st dl the Aoibs of the class
sub-hierarchy garting a cl ass. Based on er aGet Obj cdlsfor each class bellow the
one provided, i qsGet Hi er ar chyAoi ds will remove from aoi d_Ii st, the
system-object TUTTO (used by Comparator-Modifier as a upper-bound to close the
lattice - see [CM-1.4 1993)), if found during the search.

Return vaues.

- 1 @QS_PARAMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 @QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOTFOUND - no objects found for the selected class hierarchy;
- 1 QS_SUCCESS - operation successful.

Secondary effects.
. 1 QS_PARAMERR, | QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND:
cdeansaoi d_1i st

int igsGet AOGAttribs (AOD list FAR *aoid |ist,
Nanme_|ist FAR *aog_attrs)

8see section 8 |QS ar chitecture.

INESC 2361 IQsFunctional Specification & Architecture 33




I gsGet AOGAt t ri bs will search the generic attributes for whom the objects in
aoi d_I|i st defineavaue, that is, for eech object in aoi d_1i st , the"AOG" dassis
ingpected via er aGet Obj ect in order to check if each generic atribute has a wdl-
defined non-empty value. As soon as a vaue has been found for dl the generic

INESC 2361 IQsFunctional Specification & Architecture 34



atributes, the search is stopped (this could happen at the very first object of aoi d_| i st
if this object defines a non-empty vaue for dl of the generic attributes). The defined generic
attributes (except "AOI D" ) arereturned viathe in/out parameter aog_attrs.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 @QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOTFOUND - no generic attributes defined (except "AQl D" );
-1 QS_SUCCESS - operation successful.

Secondary effects:
- | @S_PARAMERR, | QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND:
cdeansaog_attrs.

int igsGet AOGval ues(AO D |ist FAR *aoid_|ist,
Array list FAR *attr_val ues)

For eech objectinaoi d_| i st,i gsGet AOGVal ues inspectsthe "AOG" class
via eraCGet Obj ect, checking for the vaue the generic dtribute passed in
attr_val ues->i nfo assumes The god isto make attr _val ues the s of
those values.

Return vaues.

- | QS_PARAMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

- | QS_ERROR - internd or unknown error; operation aborted,

-1 QS_NOTFOUND - generic atributeat t r _val ues- >i nf o undefined,
- | QS_SUCCESS - operation successful.

Secondary effects:
- | @S_PARAMERR, | QS_NOVEMORY, | QS _ERROR, | QS_NOTFOUND:
cleensat tr _val ues.

int iqgsGetFacets(AO D |ist FAR *aoid_|ist,
Nanme_|ist FAR *facets)

I qsCGet Facet s will search the facets for whom the objects in aoi d_1 i st
have a vaue defined, that is, for each object in aoi d_1| i st, the ' FACETS" dassis
ingpected via er aGet Obj ect in order to check if each facet has a well-defined norn+
empty vaue. As soon as a va ue has been found for dl the facets, the search is stopped (this
could happen at the very first object of aoi d_I i st if this object defines a non-empty

INESC 2361 IQsFunctional Specification & Architecture 35



vaue for dl of the facets). The defined facets are returned via the in/out parameter
facets.

INESC 2361 IQsFunctional Specification & Architecture 36



Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
-1 QS_NOTFOUND - no facets defined;

-1 QS_SUCCESS - operation successful.

Secondary effects:
- | QS_PARAMERR, | QS _NOMEMORY, | QS _ERROR, | QS _NOTFOUND:
cdeansf acet s.

int igsGetFacetsVal ues(AO D |ist FAR *aoid |ist,
Array list FAR
*facet val ues)

For each object in aoid_list, i qsCGet Facet sVal ues inspects the
"FACETS" dass via er aCGet Obj ect, checking for the vaue the facet in
facet _val ues->i nf o assumes The god isto make f acet _val ues the st of
those values.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 QS_ERROR - internad or unknown error; operation aborted;

-1 QS_NOTFOUND - facetf acet _val ues- >i nf o undefined;
-1 QS_SUCCESS - operation successful;

Secondary effects:
- | QS_PARAMERR, | QS_NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleensf acet val ues.

int igsGetClassAttributes(AOD Iist FAR *aoid_list,
Nanme |ist _|ist FAR
*class_atts_list)

i gsCGet Cl assAttri butes will search the dass atributes for whom the
objects in aoi d_1i st define a vaue, thet is, for each object in aoi d_I i st, the
"AOG" class is ingpected via er aGet Obj ect in order to retrieve the vaue of the
"CLASS" generic dtribute; the class whose name is given by that vaue is then inspected,
once aganusng er aGet Obj ect , and dl its atributes, having a well-defined non-empty
vaue, are retrieved into a set of names; this set is object specific and o this task must
aways be done for every object of aoi d_|i st. Since a s&t of class attributes is

INESC 2361 IQsFunctional Specification & Architecture 37



eventudly needed for each object, the in/out parameter, cl ass_atts_|i st,isas
of set of names.

INESC 2361 IQsFunctional Specification & Architecture 38



Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
-1 QS_NOTFOUND - no class dtributes defined;

-1 QS_SUCCESS - operation successful;

Secondary effects:
| @QS_PARAMERR, | QS _NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleanscl ass_atts |ist.

int igsGetAttribsValues(AOD |ist FAR *aoid |ist,
Array list FAR
*attr _val ues)

For each object in aoid_|ist, iqgsGetAttribsVal ues ingects the
"AOG" dass via er aGet Obj ect, checking for the vaue of the "CLASS" generic
atribute; the class whose name is given by that vaue is then ingpected, once again usng
er aGet Obj ect , inorder to retrieve the value of the class attribute originaly contained in
attr _val ues->i nfo. Thegod isto make at t r _val ues the s of the vaues
obtained that way.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOTFOUND - classattributeat t r _val ues- >i nf o undefined;
-1 QS_SUCCESS - operation successful;

Secondary effects:
- | QS_PARAMERR, | QS_NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleensat tr _val ues.

int igsGetSLCs(AO D Iist FAR *aoid_|ist,
Name _|ist FAR *slcs)

For each object in aoi d_|ist,iqgsGet SLCs inspects the PRJ" dass via
er aGet Obj ect, checking for a wel-defined non-empty vaue of the 'SLC" (Software
Life Cycle) attribute. At the end, s| cs will contain the Software Life Cycdles retrieved that

way.

Return vaues.
- | QS_PARAMERR - bad parameters; operation aborted;

INESC 2361 IQsFunctional Specification & Architecture 39



-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
- | QS_NOTFOUND - no software life cycles defined;

-1 QS_SUCCESS - operation successful;

INESC 2361 IQsFunctional Specification & Architecture



Secondary effects:
- 1 @QS_PARAMERR, | QS NOVEMORY, | QS ERROR, | QS _NOTFOUND:
cleanssl cs.

int iqgsGetPHAS(AO D |ist FAR *aoid_list,
Nanme | ist FAR *phas,
Name | ist FAR *slcs)

Firdly, i gsGet SLCs iscdled in order to get into sl ¢s the Software Life Cycles
of the aoi d_| i st objects. After that, i qsGet PHAsBy SLC will check, for each
Software Life Cycle, his specific Software Life Cycle Phases. At the end, phas will
contain the Software Life Cycles Phases retrieved that way.

Return vaues:

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 @QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOTFOUND - no software life cycles or no phases defined;
- 1 QS_SUCCESS - operation successful;

Secondary effects.
. 1 QS_PARAMERR, | QS_NOMEMORY, | QS_ERROR, | QS_NOTFOUND:
deansphas andsl cs.

int igsGet PHAsBySLC(Nane _|i st FAR *phas_|ist,
char FAR *slc)

Given a Software Life Cycle sl ¢, conGet SLCPHA isinvoked in order to retrieve
al the Software Life Cycle Phases of that Software Life Cycleintophas _| i st .

Return vaues

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 @QS_ERROR - interna or unknown error; operation aborted;

- | QS_NOTFOUND - no phases found for the software life cycles| c;
-1 QS_SUCCESS - operation successful;

Secondary effects:

- | @S_PARAMERR, | QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND:
cdeansphas_|i st;

INESC 2361 IQsFunctional Specification & Architecture 41



int igsGetAoi dsBySLC(AO D |ist FAR *aoid_li st,
char FAR *sl c)

For each object in aoi d_I| i st, i qsGet Aoi dsBySLC inspects the PRJ"
classvia er aGet Obj ect , checking for the value of the 'SLC" (Software Life Cycle)
attribute. At the end, aoi d_I i st will keep only the objects for whom the vaue of the
"SLC" dtribute equasthes| ¢ parameter.

Return vaues.

- 1 QS_PARANMERR - bad parameters, operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOAQOI DSSLCS - no objects found with any software life cycle;
-1 QS_NOAQOI DSSLC - no objectsfound with sl c;

- | QS_SUCCESS - operation successful;

Secondary effects:
: I QS_PARAMERR, | QS_NOVEMORY, | QS_ERROR,
| QS_NOAO DSSLCS, | QS_NOAO DSSLC: deansaoi d_| i st.

int iqgsGet SLCsByPHA(Nane |ist FAR *slcs_|ist,
char FAR *pha)

For each Software Life Cycle in sl cs_Ilist, cdlsigsGet PHASBySLC
retrieving dl its Phases. Then, it checks if pha is among those Phases. At the end,
sl cs_I i st will keep only those Software Life Cycle containing pha.

Return vaues.

- | QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @S_ERROR - interna or unknown error; operation aborted;
-1 QS_NOTFOUND - no software life cycles found with pha;
-1 @QS_SUCCESS - operation successful;

Secondary effects:
. | QS_PARAMERR, | QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND:
cdeanssl cs_|i st;

int iqgsGet Compounds(AOI D |ist FAR *aoid_|ist)

INESC 2361 IQsFunctional Specification & Architecture 42



For each object in aoi d_|ist, i gsGet Conpounds cdls conGet Mor
once, veifying if it returns A SUCCESS, in wich case the object is assumed to be a
compound object. At theend, aoi d_I i st will keep only those objects which passed the
previoustest, that is, those objects being compounds.

Return vaues.

- | QS_PARAMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
- | QS_ERROR - internd or unknown error; operation aborted,
-1 QS_NOTFOUND - no compounds found;

- | QS_SUCCESS - operation successful;

Secondary effects:
-1 QS_NOMEMORY, | QS_ERROR, | QS_NOTFOUND: dleansaoi d_1 i st .

int igsGetCaractRel (AO D list FAR *aoid_|ist,
Name_|ist FAR *crls)

Foreachobjectinaoi d_| i st,i gsGet Caract Rel cdlsconGet Mor Lnk
in order to retrieve a set of Obj | Ds, each ane sanding for a Characteristic Rdlation.
conGet Lnk will then dlow for each one of those Obj | Ds to be maped into a string:
the name of the Characterigtic Relation. Intheend, cr | s will contain st of Characteridtic
Relation names retrieved as described.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

- | QS_NOMEMORY - not enough memory; operation aborted;
-1 QS_ERROR - internd or unknown error; operation aborted;
- | QS_NOTFOUND - no characterigtic relations found;

-1 QS_SUCCESS - operation successful;

Secondary effects:
- | QS_PARAMERR, | QS _NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleenscr | s.

int iqgsGetClustersByCaractRel (
AO D list FAR
*aoid_|ist,
char FAR *crl)

For each object in aoi d_|ist, iqsCGet Cl ustersByCaract Rel cdls
conGet Mor Lnk in order to retrieve a set of Obj | Ds, each one standing for a

INESC 2361 IQsFunctional Specification & Architecture 43



Characterigtic Rdation. conGet Lnk will then dlow for each one of those Cbj | Ds to
be mapped into the name of the respective Characteristic Relation. If the parameter cr |
matches at least one of these Characteristic Relations, then the object currently under survey
is consdered to be a Clugter (being cr | one of his Characteristic Relaion). In the end,
aoi d_Ii st will keep only the objects being Clugters.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

-1 @QS_ERROR - interna or unknown error; operation aborted;

-1 QS_NOTFOUND - no dugters found with any Characteristic Relation;

- 1 QS_NOVALUES - no dugersfound with the Characteristic Relation cr |
- | QS_SUCCESS - operation successful;

Secondary effects:
: | QS_PARAMERR, | QS_NOVEMORY, | QS_ERROR,
| QS_NOTFOUND, | QS_NOVALUES: deansaoi d_Ii st.

int iqgsGetCl aoByMenber (AO D_|ist FAR *aoid_I|ist)

The objects that aggregate the onesin aoi d_I i st , areretrieved and placed there.
conGet Mor isthe low-levd functiondity on which i qsGet Cl aoByMenber manly
relies for that purpose.

Return vaues:

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
- 1 @QS_ERROR - interna or uknown error; operation aborted;
-1 QS_NOTFOUND - no compounds found,;

- 1 QS_SUCCESS - operation successful.

Secondary effects.
-1 QS_NOMEMORY, | QS_ERROR, | QS_NOTFOUND: cleensaoi d_1I i st .

int igsGet Menber ByCl ao(AO D_li st FAR *aoid_Ilist)

For exch object in aoid_ list, iqgsGetMenberByClao cdls
conGet Mor , retrieving dl his members. At theend, aoi d_1i st will bethesat of dl
the objects contained by the onesiinitidy there.

Return vaues.

- | QS_PARANMERR - bad parameters; operation aborted;

INESC 2361 IQsFunctional Specification & Architecture 44



-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
-1 QS_NOTFOUND - no compounds found;

-1 QS_SUCCESS - operation successful;

Secondary effects:
-1 QS_NOVEMORY, | @QS_ERROR, | QS_NOTFOUND: dleansaoi d_1 i st.

INESC 2361 IQsFunctional Specification & Architecture 45



int igsGetSources(AO D _|ist FAR *aoid_list)

For each object in aoi d_Ii st, i gsCGet Sour ces cdls conGet Lnk, in
order to check if the current object is source of some link. At theend, aoi d_| i st will
keep only the source objects.

Return vaues:

- 1 QS_PARANMERR - bad parameters, operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
- 1 QS_NOTFOUND - no sources found;

- 1 QS_SUCCESS - operation successful;

Secondary effects:
-1 QS_NOMEMORY, | QS_ERROR, | QS_NOTFOUND: cleensaoi d_|I i st .

i nt i gsGet SourcesAndLi nks(AO D |ist FAR *aoid_|ist
Nane |ist list FAR
*l'inks_set list)

For each object in aoid _|ist, igsGetSourcesAndLi nks cdls
conGet Lnk, in order to check if the current object is source of some link. If so, the set of
al the outgoing links from that object isretrieved. At theend, aoi d_1 i st will keep only
the source objects and | i nks_set _| i st will contain the respective sets of outgoing
links.

Return vaues.

- | QS_PARANMERR - bad parameters; operation aborted;

- 1 QS_NOMEMORY - not enough memory; operation aborted;
-1 QS_ERROR - interna or unknown error; operation aborted;
- 1 QS_NOTFOUND - no sources found;

-1 QS_SUCCESS - operation successful;

Secondary effects:

-1 QS_PARAMERR: deansl i nks_set | i st;

. 1 QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND: deans aoi d_| i st
andl i nks_set |ist.

INESC 2361 IQsFunctional Specification & Architecture 46



i nt iqgsGet SourcesByLi nkAndSi nks(
AO D _|ist FAR
*aoid |ist,
char FAR *Ii nk,
AO D |ist FAR *sinks)

For each object in aoi d_|ist, i gsGet Sources cdls conCet Lnk, in
order to check if the current object issource of | i nk to a leest onesnk in si nks. At
theend, aoi d_1i st will kegp only the objects founded to be sources in thisway.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 @QS_ERROR - interna or unknown error; operation aborted;
- | QS_NOTFOUND - no sources found,;

-1 QS_SUCCESS - operation successful;

Secondary effects:
- | QS_PARAMERR, | QS _NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleensaoi d_|i st andsi nks.

i nt i gsGet SourcesAndLi nksBySi nks(
AO D list FAR *aoid I|ist,
Name_|ist _|ist FAR
*1'inks_set _li st,
AO D _|ist FAR *sinks)

For each object in aoi d_|i st, i gsGet Sour ces cdls conGet Lnk, in
order to check if the current object is source of somelink to somesink in si nks. If so, the
st of dl the outgoing links from that object to dl the si nks is retrieved. At the end,
aoi d_Ii st will keep only the source objectsand | i nks_set _| i st will containthe
respective sets of outgoing linksto the at least one of the si nks.

Return vaues.

- 1 QS_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;
-1 QS_ERROR - interna or unknown error; operation aborted;
- 1 QS_NOTFOUND - no sources found;

-1 QS_SUCCESS - operation successful;

Secondary effects:

- | QS_PARAMERR, | QS_NOMEMORY, | QS _ERROR, | QS_NOTFOUND:
cleensaoi d_|i st andsi nks.

INESC 2361 IQsFunctional Specification & Architecture 47



