
IQS Demo Session

The IQS Demo Session basicaly consists on a sequence of screenshots showing the
full use of the main capabilities of both the IQS Assisted and Batch Modes.

The Assisted Mode Demo Session covers all the query Templates1. Results
visualization based on the Result Manager facilities and switching into and back from the
Batch Mode are also explored.

The Batch Mode Demo Session mainly focuses on History manipulation
(importing, joining, etc) as well as on showing an alternate and less restrictive way to
make queries.

Assisted Mode IQS Demo Session

Assisted Mode is the default mode when entering the IQS subsystem. Screenshoot
0 presents the IQS Assisted Mode front-end for an empty History state. Note that
because the History is empty, the related operations are unavailable (History Menu is
disabled). Also, for this reason, the last four Templates (which are based on re-using
objects from the History) are not yet choosable.

Menu History disabled (History empty)

Template5 to Template8 buttons disabled

(History empty)

Description of the selected Template

Help button

Cancel button

Check button

Template2 to Template4 available for selection

Template1 being selected

Screenshoot 0 - IQS Assisted Mode front-end

1Recall the meaning of each Template from the section ?? of the IQS Functional Specifications

document.

Template1 demo

Just after having pressed the Template1 button, the USR class hierarchy is
presented, in order to let a user class to be choosen. This class selection is
common to all the kernel-Templates (Template1 to Template4) and only happens
once per query. The objects belonging to that class are the ones to be
successively refined during the querying process (basicaly, kernel-Templates
differ on the refinement criteria).

During any Template solving, if the Check button is enabled, then there's
already a solution to the query, being that the set of objects solving the query
sinthesized so far (this temporary solution can be visualized through Result
Manager2).

Screenshoot 1 shows IQS's Template1 desktop after selecting the class
COMPANIES and about to starting the refinement by generic attributes. The
possible refinement mechanisms for the Template1 queries are generic attributes,
user defined class attributes and facets, each one being accessible by a specific
interface button.

user class COMPANIES selected

query text so far synthesized

Generic attributes button being pressed

User defined class attributes button

Facets button

USR class hierarchy

Screenshoot 1: starting refinement of the class COMPANIES objects by
generic attributes.

Having choosen the refinement through generic attributes, one can proceed
by specifying the name of a generic attribute and then the respective value (this is
also valid for user defined class attributes or facets).

2refer to section ?? for more details.

Screenshoot 1.1 shows the selection of the generic attribute NAME from a
list-box (Generic Attributes) of all the generic attribute names available to
choose. That list was only made visible after having pressed the generic
attribute's button, which, at any time, is only enabled if there are generic
attributes remaining to choose (repeated filtering by the same attribute or facet is
not allowed3). This is also true for the user defined class attributes button and
facets button (in fact, it is perfectly legal to interrupt the refinment by a certain
attribute or facet by pressing a button concerning other attribute or facet).

genneric attribute NAME being selected

available genneric attributes

Screenshot 1.1: Choosing the generic attribute NAME.

Having selected a name from the Generic Attributes list box, the union of
all the values relative to that name can be found at the Values list box. The
selection of a certain value from this list box will make the actual solution to keep
only the objects associated with that value, for the name previously choosen.
Screenshoot 1.2 shows this situation for the particular case of the value SYSTENA
of the generic attribute NAME.

Screenshoot 1.3 shows the remaining generic attribute names, after having
completed the filtering through the generic attribute NAME.

3recall the subject of avoiding redundancy at section ?? of the IQS Functional Specification

Manual.

genneric attribute value SYSTENA being selected

available genneric attributes values

Screenshot 1.2: Choosing the value SYSTENA for the generic attribute NAME.

remaining genneric attributes

Screenshot 1.3: Remaining generic attributes.

Filtering could now proceed by chosing another generic attribute or user
defined class attribute or facet, and the respective value. If one decided to
terminate the query (by pressing the CHECK button), a table with some basic
information about the objects found would be presented, as depicted in
Screenshot 1.4.

At that state, it is also possible (and most of the times, desirable) to call the
Result Manager in order to show in a graphic way the objects and some specific
information related (the procedure to do that is the same as the one for a
temporary solution or for any query kept by the History; this facilitie will be
explored at section ??).

Note also that it is already possible to make a non-Kernel query because
once the previous query terminated successfully, the History is no longer empty.

results of the query:

#0 TEMPLATE1 GET ALL CLASS="COMPANIES" AND GENNAME="NAME" AND GENVALUE="SYSTENA"

Template5 to Template8 buttons enabled

(History not empty)

Menu History enabled (History not empty)

Screenshot 1.4: Results table.

Template2 demo

Similarly to Template1, Template2 queries also start by choosing a user
class from the USR class hierarchy, but this time just after having pressed the
Template2 button. The refinement of the resulting objects will be based not only
in generic attributes, user defined class attributes or facets, but also in the
specification of a software life cycle or one or more software life cycle phases.

Note that because the ERA layout does not provide for the association of an
object with a certain software life cycle phase, what really happens when
choosing a phase is the implicit refinement of the present query solution by the
cycle(s) containing that phase. Also, if one decides to refine the objects by
directly choosing a software life cycle, then no future refinement by software life
cycle or software life cycle phase(s) should be allowed, once the ERA schema
also prevents an object from having more than one software life cycle associated.

Screenshoot 2.1 presents the Template2 front-end concerning the
interactive solving of the query #1 TEMPLATE2 GET ALL CLASS="USERS" AND
SLCNAME="ANALYSIS AND DEVELOPMENT", intended to retrieve the objects
belonging to the USERS class and associated with the software life cycle
ANALYSIS AND DEVELOPMENT. Screenshoot 2.2 shows those objects.

Software Life Cycles button

Software Life Cycles Phases button

available Software Life Cycles

Screenshot 2.1: Refining by the ANALYSIS AND DEVELOPMENT software
life cycle

Screenshot 2.2: final results of the query #1 TEMPLATE2 GET ALL
CLASS="USERS" AND SLCNAME="ANALYSIS AND DEVELOPMENT".

An alternative way of getting exactly the same results as the previous query
would be to select the objects by choosing one or more software life cycle
phase(s), these phases exclusively belonging to the cycle ANALYSIS AND

DEVELOPMENT. Screenshoots 2.3 to 2.? illustrate this procedure.
Screenshoot 2.3 shows the choosing of the software life cycle phase

PHASE1 from the union of all the software life cycle phases belonging to all the
software life cycles remaining.

By choosing a particular software life cycle phase, one can expect to keep
in the query solution only the objects for whom there are software life cycles
associated and containing that phase. In this context, it is logical to preserve in
the software life cycles list only the cycles containing that phase, as well it is also
logical to keep in the software life cycle phases list only the remaining phases
(note that the phase just choosen will not be considered anymore), contained by
those cycles.

Screenshoot 2.4 shows that, after the Screenshoot 2.3 procedure, the only
software life cycles that contained the phase PHASE1 were ANALYSIS and
ANALYSIS AND DEVELOPMENT.

available Software Life Cycles Phases

Screenshot 2.3: filtering by the software life cycle phase PHASE1.

Software Life Cycles available

after choosing the Phase PHASE1

Screenshot 2.4: available software life cycles after refining by PHASE1

Screenshot 2.5: refining by PHASE3, after refining by PHASE1

At this point, it should be obvious that filtering by a certain software life
cycle phase is the only way to choose objects simultaneously belonging to more
than one software life cycle, these cycles being the ones containing that phase.
However, if theres only one software life cycle containing the phase just choosen,
then, this is equivalent to explicitly select that cycle. This is what happens at
Screenshoot 2.5, were the phase PHASE3 is choosen (among the phases
remaining from Screenshoot 2.3) and actually only the cycle ANALYSIS AND
DEVELOPMENT contains that phase.

Althought not presented here, the solution to the query

#2 TEMPLATE2 GET ALL CLASS="USERS" AND PHANAME="PHASE1" AND

PHANAME.="PHASE3"

is the same as to the query

#1 TEMPLATE2 GET ALL CLASS="USERS" AND SLCNAME="ANALYSIS AND

DEVELOPMENT".

presented at Screenshoot 2.2.

