
SOUR
SYSTENA

INTELLIGENT QUERY SYSTEM

Technical Reference Manual

Version: 2
Revision: 0

COPYRIGHT © 1994, SYSTENA

INESC 2361 IQS Technical Reference Manual 1

Part I ...2
1 Context...2

1.1 Document Layout ...2
1.2 IQS source files ..3

Part II ..5
2 IQL Parsing ..5

2.1 The iqs.l file (using Lex) ...6
2.2 The iqs.y file (using Yacc)...8
2.3 Lexer - Parser communication...17
2.4 Structure of the IQL grammar...18

2.4.1 Assisted Mode IQL sub-grammar issues..18
2.4.2 Batch Mode IQL sub-grammar issues..20

3 Importing the generated code to a Windows DLL ...20
3.1 Redirecting the Lexer input...20
3.2 Output in the Lexer and in the Parser ..23
3.3 The myfunc.c redefinition file..24
3.4 Importing malloc and realloc...24
3.5 The #define __DOS__ directive ..25
3.6 The Large model of compilation ...26

Part III ..28
4 IQS main data structures (iqs.h) ..28

4.1 Handling the repository information (the Set approach)...........................28
4.1.1 Dynamic Arrays implementing Sets ...28
4.1.2 A basic Set API ..30

4.2 The ParserState data type...33
4.2.1 Implementation details of the History ..36
4.2.2 The VBState data type..38

5 The IQS API (iqs.c) ..39
5.1 An Auxiliary IQS API...49

6 The IQS Semantic Actions API (actions.c) ..51
6.1 The IQS Semantic Actions Auxiliary API..64

7 The IQS Visual Basic related API ...66
8 IQS module cross reference...72

8.1 Cross reference for the iqs.c file ..72
8.1.1 IQS API Auxiliary functions..73
8.1.2 Set API functions..73
8.1.3 IQS API functions...73
8.1.4 IQS Visual Basic related API functions ...75

8.2 Cross reference for the actions.c file..75
8.2.1 IQS Semantic Actions Auxiliary API functions..............................75
8.2.2 IQS Semantic Actions API functions...76

References ...78

INESC 2361 IQS Technical Reference Manual 2

Part I

1 Context

This document is the Technical Reference manual of the Intelligent Query
Subsystem (IQS) of the SOUR software system.

It describes the most important implementation issues concerning IQS as well as
providing enough information for those in charge with maintenance of the IQS module.

This text has a bottom-up style of presentation. It starts by describing certain low-
level implementation aspects, and proceeds towards interface issues. However, the
interface details covered in this document are only the ones sitting below the Visual
Basic/C frontier, that is, only those C implemented functionalities directly callable by
Visual Basic will be discussed.

This bottom-up approach is a convenient way of matching the various
implementation phases of the IQS module, reflecting many of the decisions taken and
even some of the constraints found along the development. Therefore, it serves also as a
guideline through the implementation process.

Whenever considered convenient, a little refreshing on some design and
architectural aspects will be provided for a better understanding of the implementation
decision being described.

IQS Functional Specifications & Architecture document [IQS-2.1] should be
carefully read in order to better understand many details of this text.

1.1 Document Layout

The first implementation issues to be discussed are those related to the parsing
mechanism for the Interface Query Language (IQL)1. It seems logical that before starting
with the implementation of the software layer in charge with retrieving information from
the repository, a way to recognize and handle query sentences be provided.

Once the parsing problems are solved (at least in what concerns to low-level C
code; note that interface issues are deferred to later treatment, reflecting our bottom-up
approach) it is time to think on the data structures2 which keep and handle the
information retrieved. A set of functions well suited to manipulate each particular data
structures will also be presented.

After that, the IQS API is described. The IQS API is a set of functions built around
the SOURLIB and exclusively concerned with seeking for the objects on the repository
obeying to the present query.

Having the parsing details solved, and the necessary functionalities to access
repository, the Semantic Actions can then be presented.

1refer to 5 Interface Query Language on [IQS-2.1].
2recall 7 IQS data structure design on [IQS-2.1].

INESC 2361 IQS Technical Reference Manual 3

Some implementation details intimately connected with the interaction Visual Basic
Layer/C Layer will then be discussed. In particular, the way in which the Visual Basic
Layer and the C Layer exchange information). Again, a set of specialized data structures
and functions will be put forward.

Finally, a global cross reference for all the IQS module functions will be presented.
This cross reference shows the dependences between the IQS Module functions and any
other SOURLIB Modules.

1.2 IQS source files

Before introducing the IQS Software Layers, it is perhaps convenient to offer a
brief perspective on the relations between the source files implementing those layers. In a
way this disagrees with the above established bottom-up approach, because the tasks
these files implement are, for the moment, unknown. On the other hand, it will help to
better understand the integration and cooperation of the Software parts of the IQS

module.
The below diagram shows the major dependences between the most important files

specific to the IQS module. A full arrow means the source file is included in the target file
and a dashed one means that the target is generated using the source description. No
relation with files from other modules of the SOUR project, as well as with Visual C++
1.5 libraries is shown.

iqsdefs.h ytab.h

iqs.h actions.h

iqs.c actions.c

myfunc.c

ytab.c

lexyy.c

IQS Sour module

iqs.l

iqs.y

Figure 1 - Relevant dependencies between files of the IQS module

A brief description of each file follows:

• iqsdefs.h is a header file defining almost every IQS specific constants;

• ytab.h is a header file automatically generated by Yacc; Yacc is a tool that
accepts a grammar description and generates C parsing code for that grammar3;

3see 2.2 The iqs.y file (using Yacc) for more details about this subject.

INESC 2361 IQS Technical Reference Manual 4

a full description of ytab.h is postponed until section 2.3 Lexer-Parser
communication;

• iqs.l is the source file used by Lex to generate lexyy.c; Lex is a tool that accepts
pattern descriptions and generates C code implementing a scanner for those
patterns4;

• iqs.h is the header file of the IQS API5, defining all the necessary macros, data
types, global variables and function prototypes, in order to retrieve information
from the repository and exchanging it with the interface layer;

• actions.h is the header file containing all the definitions needed to implement the
semantic actions6 for the grammar described in iqs.y;

• myfunc.c7, contains basic (re)definitions helping the lexical scanning process to
work over a string instead of a file;

• lexyy.c is the lexical analyzer automatically generated by Lex using the iqs.l
description;

• iqs.c is the file implementing the IQS API.

• actions.c contains the semantic actions code for the grammar described in iqs.y;

• ytab.c is the parser automatically generated by Yacc based on the iqs.y
description;

• iqs.y is the source file used by Yacc to produce ytab.c and ytab.h.

4refer to section 2.1 The iqs.l file (using Lex).
5see also section 5 The IQS API (iqs.c) for a complete description.
6see section 6 The IQS Semantic Actions API (actions.c).
7refer to 3.3 The myfunc.c redefinitions file.

INESC 2361 IQS Technical Reference Manual 5

Part II

2 IQL Parsing

During the IQS design phase, two basic operation modes8 evolved, reflecting two
distinct ways of querying the repository:

• the Assisted Mode, providing for a permanent syntactic and semantic assistance
as well as an exclusively interactive way of query building;

• the Batch Mode, less user-friendly but best suited to those users wishing to
solve large sets of queries at once and possessing a comprehensive knowledge of
the repository structure.

These two operation modes imply two Interface Query Languages9, designed to
cope with the specific demands of each mode, but, at the same time, preserving a
minimal degree of compatibility between them.

The formal description of each IQLs is naturally provided by defining its grammar.
One advantage of this kind of description is the possibility of using tools allowing for the
automatic generation of C code which implements the parsing mechanism for "sentences"
obeying to that grammar.

Having two grammars (each one for a specific operation mode, and so for a
specific IQL) does not necessarily means of the need for two parsers. It is advantageous
to bring together, if possible, both grammars into a single one in order to generate a
unique parser: one should not forget that the generated C parsing code must be
converted to a WINDOWS 3.1 DLL and therefore it is much easier to deal with only one
parser than with two distinct ones, probably sharing many data structures and functions
(both parsers would have been generated by the same tool) and rising conflicts hard to
solve in automatic generated code environments (to modify generated code can be hard
and error prone).

The tools used to generate the C code in charge with syntactical recognition of
queries made in both the Assisted and Batch IQL flavors were Lex & Yacc. Therefore,
the next sections describe the procedure followed in order to have those tools to produce
the parsing code for both IQLs (for a matter of convenience we will refer from now on to
just one IQL: the one resulting from joining the Batch Mode and the Assisted Mode
variants).

Before that, it should be remembered the role of the so-called Templates4 (see
Figure 2): these minimal efficient queries provide (in design terms) for the basic
description of the set of valid tokens Lex must recognize and the set of valid
combinations Yacc must deal with. These combinations match already the IQL Batch
Mode grammar branch. The IQL Assisted Mode grammar flavor appends to those
combinations only the ones enough to deal with the problems of redundancy and
incompleteness.

8refer to 4 IQS operation modes from [IQS-2.1].
9refer to 5 Interface Query Language in [IQS-2.1].

INESC 2361 IQS Technical Reference Manual 6

// Interface Query Language Kernel Templates

NUMBER TEMPLATE1 GET ALL CLASS="class" <AttributeDescription1>*

NUMBER TEMPLATE2 GET ALL CLASS="class" <AttributeDescription2>*

NUMBER TEMPLATE3 GET ALL CLASS="class" <AttributeDescription1>*

 [AND IS COMPOUND

 <CompoundDescription>*]

NUMBER TEMPLATE4 GET ALL CLASS="class" <AttributeDescription1>*

 [AND BELONG TO COMPOUND

 <CompoundDescription>*]

// Interface Query Language non-Kernel Templates

NUMBER TEMPLATE5 <Query> [LINKED BY "relation" [WITH <Query>]]

NUMBER TEMPLATE6 <Query> [LINKED TO <Query> [BY "relation"]]

NUMBER TEMPLATE7 <Query> [OR <Query>]

NUMBER TEMPLATE8 <Query> [RESTRICTED TO <AttributeDescription1>+]

// common definitions

<AttributeDescription1> = AND (<GenDescp> | <FacDescp> | <AttDescp>)

<GenDescp> = GENNAME="genname" AND GENVALUE="genvalue"

<FacDescp> = FACNAME="facname" AND FACVALUE="facvalue" AND CONCEPTDIST>=<Dist>

<AttDescp> = ATTNAME="attname" AND ATTVALUE="attvalue"

<AttributeDescription2> = (<AttributeDescription1>* (AND <PhaDescp>)*)*

 [AND <SlcDescp> <AttributeDescription1>*]

<SlcDescp> = SLCNAME="slcname"

<PhaDescp> = PHANAME="phaname"

<CompoundDescription> = <AttributeDescription1>* (AND <CrlDescp>)*

 <AttributeDescription1>*

<CrlDescp> = CRLNAME="crlname"

<Dist> = NUMBER%

<Query> = #NUMBER

NUMBER = [0-9]+

Figure 2 - The Templates

2.1 The iqs.l file (using Lex)

The contents of iqs.l describing to Lex the acceptable tokens for the unified IQL

grammar Yacc will handle, are:

INESC 2361 IQS Technical Reference Manual 7

%{

/* definition section */

int yylook();

int yyback(int *, int);

%}

/* some "macros" */

Tpl1 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][1]

Tpl2 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][2]

Tpl3 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][3]

Tpl4 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][4]

Tpl5 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][5]

Tpl6 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][6]

Tpl7 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][7]

Tpl8 [Tt][Ee][Mm][Pp][Ll][Aa][Tt][Ee][8]

GetAllClass [Gg][Ee][Tt][]+[Aa][Ll][Ll][]+[Cc][Ll][Aa][Ss][Ss]

And [Aa][Nn][Dd]

GenName [Gg][Ee][Nn][Nn][Aa][Mm][Ee]

FacName [Ff][Aa][Cc][Nn][Aa][Mm][Ee]

AttName [Aa][Tt][Tt][Nn][Aa][Mm][Ee]

GenValue [Gg][Ee][Nn][Vv][Aa][Ll][Uu][Ee]

FacValue [Ff][Aa][Cc][Vv][Aa][Ll][Uu][Ee]

AttValue [Aa][Tt][Tt][Vv][Aa][Ll][Uu][Ee]

IsCompound [Ii][Ss][]+[Cc][Oo][Mm][Pp][Oo][Uu][nN][dD]

BelongToCompound [Bb][Ee][Ll][Oo][Nn][Gg][]+[Tt][Oo][]+

[Cc][Oo][Mm][Pp][Oo][Uu][nN][dD]

CrlName [Cc][Rr][Ll][Nn][Aa][Mm][Ee]

RestrictedTo [Rr][Ee][Ss][Tt][Rr][Ii][Cc][Tt][Ee][Dd][]+[Tt][Oo]

Id [\.\+\/*\@\;\:\\\(\)_\-0-9a-zA-Z]+

CardNumber #[0-9]+

%s LISTOFIDENT /* specific state to handle lists of identifiers interleaved by

white space */

%%

/* rules section: pattern { action } */

<LISTOFIDENT>{Id} {strcpy(yylval.STR,yytext);return(IDENT);}

/* tokens marking the unsuccessful or successful end of a query; */

/* they are not kept in the final query string */

[Aa][Bb][Oo][Rr][Tt] {return(ABORT);}

[Cc][Hh][Ee][Cc][Kk] {return(CHECK);}

/* building blocks of any Template */

{Tpl1} {yylval.INT = TEMPLATE1;return(TEMPLATE1);}

{Tpl2} {yylval.INT = TEMPLATE2;return(TEMPLATE2);}

{Tpl3} {yylval.INT = TEMPLATE3;return(TEMPLATE3);}

{Tpl4} {yylval.INT = TEMPLATE4;return(TEMPLATE4);}

{Tpl5} {yylval.INT = TEMPLATE5;return(TEMPLATE5);}

{Tpl6} {yylval.INT = TEMPLATE6;return(TEMPLATE6);}

{Tpl7} {yylval.INT = TEMPLATE7;return(TEMPLATE7);}

{Tpl8} {yylval.INT = TEMPLATE8;return(TEMPLATE8);}

{GetAllClass} {return(GETALLCLASS);}

INESC 2361 IQS Technical Reference Manual 8

{And} {return(AND);}

{GenName} {yylval.INT = GENNAME;return(GENNAME);}

{FacName} {yylval.INT = FACNAME;return(FACNAME);}

{AttName} {yylval.INT = ATTNAME;return(ATTNAME);}

{GenValue} {yylval.INT = GENVALUE;return(GENVALUE);}

{FacValue} {yylval.INT = FACVALUE;return(FACVALUE);}

{AttValue} {yylval.INT = ATTVALUE;return(ATTVALUE);}

{IsCompound} {return(ISCOMPOUND);}

{BelongToCompound} {return(BELONGTOCOMPOUND);}

{CrlName} {yylval.INT = CRLNAME;return(CRLNAME);}

[Oo][Rr] {return(OR);}

{RestrictedTo} {return(RESTRICTEDTO);}

[Ll][Ii][Nn][Kk][Ee][Dd][]+[Bb][Yy] {return(LINKEDBY);}

[Ww][Ii][Tt][Hh] {return(WITH);}

[Ll][Ii][Nn][Kk][Ee][Dd][]+[Tt][Oo] {return(LINKEDTO);}

[Bb][Yy] {return(BY);}

[Pp][Hh][Aa][Nn][Aa][Mm][Ee] {yylval.INT = PHANAME;return(PHANAME);}

[Ss][Ll][Cc][Nn][Aa][Mm][Ee] {yylval.INT = SLCNAME;return(SLCNAME);}

[Cc][Oo][Nn][Cc][Ee][Pp][Tt][Dd][Ii][Ss][Tt] {return (CONDIST);}

{CardNumber} {yylval.INT = atoi(yytext+1); return(NUMBER);}

[0-9]+[%] {yytext[yyleng-1]='\0'; yylval.INT = atoi(yytext); return

(NUMBER);}

{Id} {strcpy(yylval.STR,yytext);return(IDENT);}

"=" {return(yytext[0]);}

">" {return(yytext[0]);}

";" {return(yytext[0]);}

"," {return(yytext[0]);}

"\|" {return(yytext[0]);}

":" {return(yytext[0]);}

<LISTOFIDENT>"\"" {BEGIN INITIAL;return(yytext[0]);}

"\"" {BEGIN LISTOFIDENT;return(yytext[0]);}

%%

/* no main; Yacc generated code will call yylex */

As it will be seen, the Lexical Analyzer which can be generated from this file does
not work alone, but cooperatively with a Yacc generated parser.

2.2 The iqs.y file (using Yacc)

The unified grammar for both the Assisted Mode and Batch Mode IQLs is obtained
by moving up the root of both grammars to a common level. This is feasible because the
set of valid tokens for both grammars is exactly the same. Only the possible valid
sequences are different.

Every function implementing a semantic action has the prefix iqsSA, that is, IQS

Semantic Action10.
The contents of file iqs.y, with a description of the unified IQL grammar acceptable

by Yacc, follow:

10to know more about the Semantic Actions refer to chapter 6 The IQS Semantic Actions API
(actions.c).

INESC 2361 IQS Technical Reference Manual 9

%{

/* definition section */

#include "actions.h" /* semantic actions module header */

%}

/* possible types for yylval (the token recognized by Lex) */

%union {

 int INT;

 char STR[255];

}

/* type definition for each grammar token */

%token <INT> TEMPLATE1 TEMPLATE2 TEMPLATE3 TEMPLATE4 TEMPLATE5 TEMPLATE6

 TEMPLATE7 TEMPLATE8

%token <INT> GENNAME ATTNAME FACNAME GENVALUE ATTVALUE FACVALUE SLCNAME PHANAME

 CRLNAME NUMBER

%token <STR> IDENT

%token ABORT CHECK

%token GETALLCLASS AND CONDIST ISCOMPOUND BELONGTOCOMPOUND OR RESTRICTEDTO

%token LINKEDBY WITH LINKEDTO BY

/* type for the non-terminal ListOfIdent */

%type <STR> ListOfIDENT

%%

/* rules section */

/* ROOT of the unified grammar */

Iqs : batchIqs

 | assistIqs

 ;

/* BATCH mode branch */

batchIqs : batchIqs batchTemplate1 { iqsSAcheck(); }

 | batchIqs batchTemplate2 { iqsSAcheck(); }

 | batchIqs batchTemplate3 { iqsSAcheck(); }

 | batchIqs batchTemplate4 { iqsSAcheck(); }

 | batchIqs batchTemplate5 { iqsSAcheck(); }

 | batchIqs batchTemplate6 { iqsSAcheck(); }

 | batchIqs batchTemplate7 { iqsSAcheck(); }

 | batchIqs batchTemplate8 { iqsSAcheck(); }

 | batchTemplate1 { iqsSAcheck(); }

 | batchTemplate2 { iqsSAcheck(); }

 | batchTemplate3 { iqsSAcheck(); }

 | batchTemplate4 { iqsSAcheck(); }

 | batchTemplate5 { iqsSAcheck(); }

 | batchTemplate6 { iqsSAcheck(); }

 | batchTemplate7 { iqsSAcheck(); }

 | batchTemplate8 { iqsSAcheck(); }

 ;

INESC 2361 IQS Technical Reference Manual 10

/* ASSIST mode branch */

assistIqs: assistTemplate1

 | assistTemplate2

 | assistTemplate3

 | assistTemplate4

 | assistTemplate5

 | assistTemplate6

 | assistTemplate7

 | assistTemplate8

 | CHECK { iqsSAcheck(); }

 | ABORT { iqsSAabort(); }

 ;

/* COMMON rules */

ListOfIDENT : IDENT {strcpy($$,$1);}

 | ListOfIDENT IDENT {strcat($1," ");strcat($1,$2);strcpy($$,$1);}

 ;

/*-----------------------Template1 BATCH mode rule----------------------*/

batchTemplate1 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE1

 { iqsSAinitGetAllClass($3); } GETALLCLASS '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBellowClass($8); }

 batchTemplate11

 ;

batchTemplate11 :

 | AND batchAttrDesc

 ;

batchAttrDesc : batchGenDesc batchTemplate11

 | batchFacDesc batchTemplate11

 | batchAttDesc batchTemplate11

 ;

batchGenDesc : GENNAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAttrValues($1,$5); } AND

 GENVALUE '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsByValue($9, $5, $12, -1); }

 ;

batchFacDesc : FACNAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAttrValues($1,$5); } AND

 FACVALUE '=' '\"' ListOfIDENT '\"'

 AND CONDIST '>''=' NUMBER

 { iqsSAgetAoidsByValue($9, $5, $12, $18); }

 ;

batchAttDesc : ATTNAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAttrValues($1,$5); } AND

 ATTVALUE '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsByValue($9, $5, $12, -1); }

 ;

INESC 2361 IQS Technical Reference Manual 11

/*---------------------Template1 ASSISTED mode rule--------------------*/

assistTemplate1 : TEMPLATE1 { iqsSAinitGetAllClass($1); }

 | TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsBellowClass($5); }

 | TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 AND AttrDesc

 ;

AttrDesc : AttrName

 | AttrNameAnd AttrDesc

 | AttrNameEqId

 | AttrNameEqIdAnd AttrDesc

 | AttrNameEqIdAndAttrValueEqId

 | AttrNameEqIdAndAttrValueEqIdAnd AttrDesc

 ;

AttrName : GENNAME { iqsSAafterAttrTypeChoice($1); }

 | FACNAME { iqsSAafterAttrTypeChoice($1); }

 | ATTNAME { iqsSAafterAttrTypeChoice($1); }

 ;

AttrNameAnd : GENNAME AND

 | FACNAME AND

 | ATTNAME AND

 ;

AttrNameEqId: GENNAME '=' '\"' ListOfIDENT '\"' {iqsSAgetAttrValues($1,$4); }

 | FACNAME '=' '\"' ListOfIDENT '\"' {iqsSAgetAttrValues($1,$4); }

 | ATTNAME '=' '\"' ListOfIDENT '\"' {iqsSAgetAttrValues($1,$4); }

 ;

AttrNameEqIdAnd: GENNAME '=' '\"' ListOfIDENT '\"' AND

 | FACNAME '=' '\"' ListOfIDENT '\"' AND

 | ATTNAME '=' '\"' ListOfIDENT '\"' AND

 ;

AttrNameEqIdAndAttrValueEqId: GENNAME '=' '\"' ListOfIDENT '\"' AND GENVALUE

 '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsByValue($7, $4, $10, -1); }

 | FACNAME '=' '\"' ListOfIDENT '\"' AND FACVALUE

 '=' '\"' ListOfIDENT '\"'

 AND CONDIST '>''=' NUMBER

 { iqsSAgetAoidsByValue($7, $4, $10, -1);}

 | ATTNAME '=' '\"' ListOfIDENT '\"' AND ATTVALUE

 '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsByValue($7, $4, $10, -1); }

 ;

AttrNameEqIdAndAttrValueEqIdAnd: GENNAME '=' '\"' ListOfIDENT '\"' AND

 GENVALUE '=' '\"' ListOfIDENT '\"' AND

 | FACNAME '=' '\"' ListOfIDENT '\"' AND

 FACVALUE '=' '\"' ListOfIDENT '\"' AND

 CONDIST '>''=' NUMBER AND

 | ATTNAME '=' '\"' ListOfIDENT '\"' AND

 ATTVALUE '=' '\"' ListOfIDENT '\"' AND

 ;

INESC 2361 IQS Technical Reference Manual 12

/*-----------------------Template2 BATCH mode rule----------------------*/

batchTemplate2 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE2

 { iqsSAinitGetAllClass($3); } GETALLCLASS '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBellowClass($8); }

 batchTemplate22

 ;

batchTemplate22 :

 | AND batcht2AttrDesc

 ;

batcht2AttrDesc : batchGenDesc batchTemplate22

 | batchFacDesc batchTemplate22

 | batchAttDesc batchTemplate22

 | batchSlcDesc batchTemplate11

 | batchPhaDesc batchTemplate22

 ;

batchSlcDesc : SLCNAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBySlc($5); }

 ;

batchPhaDesc : PHANAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetSlcsAndAoidsByPha($5); }

 ;

/*-----------------------Template2 ASSISTED mode rule------------------*/

assistTemplate2 : TEMPLATE2 { iqsSAinitGetAllClass($1); }

 | TEMPLATE2 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsBellowClass($5); }

 | TEMPLATE2 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 t2AttrDesc

 ;

t2AttrDesc : AttrName

 | AttrNameAnd t2AttrDesc

 | AttrNameEqId

 | AttrNameEqIdAnd t2AttrDesc

 | AttrNameEqIdAndAttrValueEqId

 | AttrNameEqIdAndAttrValueEqIdAnd t2AttrDesc

 | SlcDesc

 | PhaDesc

 ;

SlcDesc : SLCNAME { iqsSAafterAttrTypeChoice($1); }

 | SLCNAME AND t2AttrDesc

 | SLCNAME '=' '\"' ListOfIDENT '\"' { iqsSAgetAoidsBySlc($4); }

 | SLCNAME '=' '\"' ListOfIDENT '\"' AND t2AttrDesc

 ;

PhaDesc : PHANAME { iqsSAafterAttrTypeChoice($1); }

 | PHANAME AND t2AttrDesc

 | PHANAME '=' '\"' ListOfIDENT '\"'

 { iqsSAgetSlcsAndAoidsByPha($4); }

 | PHANAME '=' '\"' ListOfIDENT '\"' AND t2AttrDesc

 ;

INESC 2361 IQS Technical Reference Manual 13

/*-----------------------Template3 BATCH mode rule----------------------*/

batchTemplate3 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE3

 { iqsSAinitGetAllClass($3); } GETALLCLASS '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBellowClass($8); }

 batchTemplate33

 ;

batchTemplate33 :

 | AND batchAttrDesc batchTemplate333

 | ANDISCOMPOUND { iqsSAafterIsCompoundPressed();}

 batchTemplate3333

 ;

batchTemplate333 :

 | ANDISCOMPOUND { iqsSAafterIsCompoundPressed();}

 batchTemplate3333

 ;

batchTemplate3333 :

 | AND batchCAttrDesc

 ;

batchCAttrDesc : batchGenDesc batchTemplate3333

 | batchFacDesc batchTemplate3333

 | batchAttDesc batchTemplate3333

 | batchCrlDesc batchTemplate3333

batchCrlDesc : CRLNAME { iqsSAafterAttrTypeChoice($1); } '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsByCaractRel($5); }

 ;

/*-----------------------Template3 ASSISTED mode rule------------------*/

assistTemplate3 : TEMPLATE3 { iqsSAinitGetAllClass($1); }

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsBellowClass($5); }

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDesc

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDescBeforeC ISCOMPOUND

 { iqsSAafterIsCompoundPressed(); }

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDescBeforeC ISCOMPOUND AND CAttrDesc

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 ISCOMPOUND { iqsSAafterIsCompoundPressed(); }

 | TEMPLATE3 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 ISCOMPOUND AND CAttrDesc

 ;

AttrDescBeforeC : AttrNameAnd

 | AttrNameAnd AttrDescBeforeC

 | AttrNameEqIdAnd

 | AttrNameEqIdAnd AttrDescBeforeC

 | AttrNameEqIdAndAttrValueEqIdAnd

 | AttrNameEqIdAndAttrValueEqIdAnd AttrDescBeforeC

 ;

INESC 2361 IQS Technical Reference Manual 14

CAttrDesc : AttrName

 | AttrNameAnd CAttrDesc

 | AttrNameEqId

 | AttrNameEqIdAnd CAttrDesc

 | AttrNameEqIdAndAttrValueEqId

 | AttrNameEqIdAndAttrValueEqIdAnd CAttrDesc

 | CRLNAME { iqsSAafterAttrTypeChoice($1); }

 | CRLNAME AND CAttrDesc

 | CRLNAME '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsByCaractRel($4); }

 | CRLNAME '=' '\"' ListOfIDENT '\"' AND CAttrDesc

 ;

/*-----------------------Template4 BATCH mode rule----------------------*/

batchTemplate4 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE4

 { iqsSAinitGetAllClass($3); } GETALLCLASS '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBellowClass($8); }

 batchTemplate44

 ;

batchTemplate44 :

 | AND batchAttrDesc batchTemplate444

 | ANDBELONGTOCOMPOUND

 { iqsSAafterBelongToCompoundPressed(); }

 batchTemplate3333

 ;

batchTemplate444 :

 | ANDBELONGTOCOMPOUND

 { iqsSAafterBelongToCompoundPressed(); }

 batchTemplate3333

 ;

/*-----------------------Template4 ASSISTED mode rule------------------*/

assistTemplate4 : TEMPLATE4 { iqsSAinitGetAllClass($1); }

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsBellowClass($5); }

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDesc

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDesc BeforeC BELONGTOCOMPOUND

 { iqsSAafterBelongToCompoundPressed(); }

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND

 AttrDescBeforeC BELONGTOCOMPOUND AND CAttrDesc

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 BELONGTOCOMPOUND

 { iqsSAafterBelongToCompoundPressed(); }

 | TEMPLATE4 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 BELONGTOCOMPOUND AND CAttrDesc

 ;

INESC 2361 IQS Technical Reference Manual 15

/*-----------------------Template5 BATCH mode rule----------------------*/

batchTemplate5 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE5

 { iqsSAinitQuery($3); } NUMBER

 { iqsSAgetAoidsFromQuery($5); } batchTemplate55

 ;

batchTemplate55 :

 | LINKEDBY '\"' ListOfIDENT '\"'

 { iqsSAgetSourcesByLink($3); } batchTemplate555

 ;

batchTemplate555 :

 | WITH NUMBER { #ifdef __DOS__

 iqsSAgetSourcesByLinkAndSinks(iqsState.iqsLNKNames.names,$2);

 #endif }

 ;

/*-----------------------Template5 ASSISTED mode rule------------------*/

assistTemplate5 : TEMPLATE5 { iqsSAinitQuery($1); }

 | TEMPLATE5 NUMBER { iqsSAgetAoidsFromQuery($2); }

 | TEMPLATE5 NUMBER LINKEDBY '\"' ListOfIDENT '\"'

 { iqsSAgetSourcesByLink($5); }

 | TEMPLATE5 NUMBER LINKEDBY '\"' ListOfIDENT '\"' WITH

 NUMBER { iqsSAgetSourcesByLinkAndSinks($5,$8); }

 ;

/*-----------------------Template6 BATCH mode rule----------------------*/

batchTemplate6 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE6

 { iqsSAinitQuery($3); } NUMBER

 { iqsSAgetAoidsFromQuery($5); } batchTemplate66

 ;

batchTemplate66 :

 | LINKEDTO NUMBER { iqsSAgetSourcesAndLinksBySinks($2); }

 batchTemplate666

 ;

batchTemplate666 :

 | BY '\"' ListOfIDENT '\"' { iqsSAgetSourcesByLink($3); }

 ;

/*-----------------------Template6 ASSISTED mode rule------------------*/

assistTemplate6 : TEMPLATE6 { iqsSAinitQuery($1); }

 | TEMPLATE6 NUMBER { iqsSAgetAoidsFromQuery($2); }

 | TEMPLATE6 NUMBER LINKEDTO NUMBER

 { iqsSAgetSourcesAndLinksBySinks($4); }

 | TEMPLATE6 NUMBER LINKEDTO NUMBER BY '\"' ListOfIDENT '\"'

 { iqsSAgetSourcesByLink($7); }

 ;

INESC 2361 IQS Technical Reference Manual 16

/*-----------------------Template7 BATCH mode rule----------------------*/

batchTemplate7 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE7

 { iqsSAinitQuery($3); } NUMBER

 { iqsSAgetAoidsFromQuery($5); } batchTemplate77

 ;

batchTemplate77 :

 | OR NUMBER { iqsSAqueryUnion($2); }

 ;

/*-----------------------Template7 ASSISTED mode rule------------------*/

assistTemplate7 : TEMPLATE7 { iqsSAinitQuery($1); }

 | TEMPLATE7 NUMBER { iqsSAgetAoidsFromQuery($2); }

 | TEMPLATE7 NUMBER OR NUMBER { iqsSAqueryUnion($4); }

 ;

/*-----------------------Template8 BATCH mode rule----------------------*/

batchTemplate8 : NUMBER { batchIqsSAcheckIndex($1); }

 TEMPLATE8 { iqsSAinitQuery($3); } NUMBER

 { iqsSAgetAoidsFromQuery($5); } batchTemplate88

 ;

batchTemplate88 :

 | RESTRICTEDTO batchAttrDesc

 ;

/*-----------------------Template8 ASSISTED mode rule------------------*/

assistTemplate8 : TEMPLATE8 { iqsSAinitQuery($1); }

 | TEMPLATE8 NUMBER { iqsSAgetAoidsFromQuery($2); }

 | TEMPLATE8 NUMBER RESTRICTEDTO AttrDesc

 ;

%%

#include "myfunc.c" /* mygetc, myputc, yyerror and yywrap (re)definitions; */

/* joining the Lex generated code at the end of the Yacc generated code */

/* and producing a unique module containing the scanner and the parser */

#ifdef __DOS__

#include "lexyy.c"

#else

#include "lex.yy.c"

#endif

INESC 2361 IQS Technical Reference Manual 17

2.3 Lexer - Parser communication

When a Lex scanner and a Yacc parser are used in a cooperative way, the Lex
scanner main routine, yylex, acts as a subroutine of yyparse, the main routine of the
Yacc parser.

The Lexer scans the input string for the character patterns specified in his rule's
section. Whenever a valid pattern (or token), is found it returns a token specific integer
code to Yacc, and optionally the token itself via one of the fields (token data type
dependent) of the yylval union, defined in iqs.y. Then, Yacc manages to match the token
code within one of his grammar rules. If the matching is successful, the eventual semantic
action is executed.

The token specific integer codes (which must be known by both the Lexer and the
Parser) are only generated for those tokens specified in the %token declarations in the /*
definition section */ of iqs.y.

The file ytab.h, containing that (and eventually other) information that must be
shared by the Lexer and the Parser, is shown next:

#ifdef __DOS__

define TEMPLATE1 257

define TEMPLATE2 258

define TEMPLATE3 259

define TEMPLATE4 260

define TEMPLATE5 261

define TEMPLATE6 262

define TEMPLATE7 263

define TEMPLATE8 264

define GENNAME 265

define ATTNAME 266

define FACNAME 267

define GENVALUE 268

define ATTVALUE 269

define FACVALUE 270

define SLCNAME 271

define PHANAME 272

define CRLNAME 273

define NUMBER 274

define IDENT 275

define ABORT 276

define CHECK 277

define GETALLCLASS 278

define AND 279

define CONDIST 280

define ISCOMPOUND 281

define BELONGTOCOMPOUND 282

define OR 283

define RESTRICTEDTO 284

define LINKEDBY 285

define WITH 286

define LINKEDTO 287

define BY 288

#endif

INESC 2361 IQS Technical Reference Manual 18

2.4 Structure of the IQL grammar

The Assisted Mode branch and the Batch Mode branch of the unified IQL

grammar, as depicted in the iqs.y file, despite sharing the tokens (and thus based on the
same Lexer), deeply differ in their structure. They were tailored to fulfill two different
(although complementary) modes of operation: batch or interactive query resolution.

Both grammars are left-recursive in order to let the parsing process to be a little
more efficient.

2.4.1 Assisted Mode IQL sub-grammar issues

Being interface-event dependent, the Assisted Mode sub-grammar has to
deal with a few specific issues:

• redundancy: a sequence of repeated tokens (for instance originated by
repeated mouse clicks in the same button) should produce the same result
as one instance of the same token. Redundancy is a very often situation in
the Interface layer, but it is not handled there; instead, it must be
recognized by the Parser layer which, via semantic actions, will have to
prevent it from remaining in the query text and so providing for
compatibility with Batch Mode;

• incompleteness: a sequence of one or more tokens may not imply any
object filtering; instead, they could stand for a valid sequence of interface
actions not producing any refinement of the present query solution. Again,
and for compatibility with Batch Mode, incompleteness is not allowed to
stay in the final query text. Only those tokens whose recognition implied
object filtering will remain.

• alternation between Interface Layer and Parser Layer control over
the IQS module. This feature reflects an implementation constraint: it would
be desirable to have the Lexer in background, in an endless loop, waiting
for tokens to be recognized, while the Interface Layer would provide for
feeding it. In fact, Lex & Yacc were tailored for this kind of behaviour, but,
in the cooperative multitasking environment of WINDOWS 3.1, which lacks
the notion of process (or preemptive multitasking), this introduces
communication and synchronization problems between the two Layers in
the case we want them to work concurrently11. An easier way is to let the
control alternate between the Interface Layer and the Parser Layer. Every
time an Interface event produces a token (or a small set of tokens, not
semantically dividable), the sentence so far built is added that token and
again submitted to the Parser Layer. The IQL Assisted Mode sub-grammar
will be highly partitioned because it must predict every valid situation in
which the query phrase can grow. Also,

11Threads could have been a valid solution to this problem; however, in WINDOWS 3.1, threads
are hard to code and to maintain.

INESC 2361 IQS Technical Reference Manual 19

the semantic actions will be terminal, that is, they will refer only to the
token (or small set of tokens) last added to the query text. Therefore, the
rules of the IQL Assisted Mode sub-grammar assume a stair-fashion,
reflecting this behaviour.

A piece of iqs.y, with an Assisted Mode rule, will help to make these
details clear:

/*---------------------Template1 ASSISTED mode rule--------------------*/

/* Note the terminal semantic actions ... */

assistTemplate1 : TEMPLATE1 { iqsSAinitGetAllClass($1); }

 | TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 { iqsSAgetAoidsBellowClass($5); }

 | TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"'

 AND AttrDesc

 ;

/* Note the stair fashion; every valid growing possibilities for a sentence */

/* which at least matched TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"' AND*/

/* are considered */

AttrDesc : AttrName

 | AttrNameAnd AttrDesc

 | AttrNameEqId

 | AttrNameEqIdAnd AttrDesc

 | AttrNameEqIdAndAttrValueEqId

 | AttrNameEqIdAndAttrValueEqIdAnd AttrDesc

 ;

/* To exemplify redundancy and incompleteness take a look at the next two */

/* rules: */

AttrName : GENNAME { iqsSAafterAttrTypeChoice($1); }

 | FACNAME { iqsSAafterAttrTypeChoice($1); }

 | ATTNAME { iqsSAafterAttrTypeChoice($1); }

 ;

AttrNameAnd : GENNAME AND

 | FACNAME AND

 | ATTNAME AND

 ;

/* It is then possible to have TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"'*/

/* AND GENNAME AND GENAME ... etc; this introduces: */

/* redundancy: the effect is the same of having just one GENNAME token; */

/* the semantic action { iqsSAafterAttrTypeChoice($1); } is */

/* executed twice; */

/* incompleteness: the semantic action { iqsSAafterAttrTypeChoice($1); } */

/* executed every time GENNAME is recognized, does not refine */

/* the present query solution; */

/* The Minimal Efficient Form12, resulting from eliminating redundancy and */

/* incompleteness would be TEMPLATE1 GETALLCLASS '=' '\"' ListOfIDENT '\"' */

12 refer to 5 Interface Query Language at [IQS-2.1].

INESC 2361 IQS Technical Reference Manual 20

2.4.2 Batch Mode IQL sub-grammar issues

This branch of the unified IQL grammar can be directly derived from the
Templates specification. This sub-grammar is simpler and smaller than the
Assisted Mode one, because:

• since it handles only Minimal Efficient Forms, it does not have to deal
with redundancy and incompleteness;

• the Batch Mode is a kind of "silent" operation mode: the Interface Layer
gives the control of the execution flow to the Parser Layer every time a
batch of queries has to be recognized and solved; then, it waits patiently
until all the queries in the batch are solved or an error occurs. There's no
alternation between the Interface Layer and the Parser Layer, therefore
semantic actions can alternate with tokens within the grammar rules.

For instance, consider the three rules for the non-terminal
assistTemplate1 in the previous example with Template1 ASSISTED mode
rule against the equivalent rule in Batch Mode:

/*-----------------------Template1 BATCH mode rule----------------------*/

batchTemplate1 : NUMBER { batchIqsSAcheckIndex($1); } TEMPLATE1

 { iqsSAinitGetAllClass($3); } GETALLCLASS '=' '\"'

 ListOfIDENT '\"' { iqsSAgetAoidsBellowClass($8); }

 batchTemplate11

 ;

/* etc ... */

3 Importing the generated code to a Windows DLL

The automatically generated code for the Lexer and the Parser is not ready to be
directly used in a WINDOWS 3.1 DLL. This chapter describes the necessary
modifications.

3.1 Redirecting the Lexer input

This section is based on the work described at [GF93].

By default, the lexical analyzer input() macro scans through the standard input
using the call getc(yyin). In the lexyy.c file, both the input() macro and the yyin
declarations are:

INESC 2361 IQS Technical Reference Manual 21

define input() (((yytchar=yysptr>yysbuf?U(*--y ysptr):getc(yyin)==10?

(yylineno++,yytchar):yytchar)==EOF?0:yytchar)

FILE *yyin = {stdin};

Instead of scanning stdin, what we really want is the Lexer to check for the tokens
in a memory string; this string will be the query synthesized in Assisted Mode or one of a
batch of queries in the Batch Mode.

In order to redirect the Lexer input from the stdin to a memory string, the
automatically generated yylex.c file must suffer a few modifications:

• substitute the FILE *yyin = {stdin}; declaration by char *yyin;

• in the macro definition of input() substitute getc(yyin) by mygetc(yyin++)
and EOF by 0.

That is, the input() macro and the yyin declaration should be:

define input() (((yytchar=yysptr>yysbuf?U(*--yysptr):mygetc(yyin++))==10?

(yylineno++,yytchar):yytchar)==0?0:yytchar)

char *yyin;

The mygetc function is:

int mygetc(char * strin)

{

 int c;

 return(c=*strin);

}

It is defined in the myfunc.c file, which has some other useful redefinitions13.

All that is necessary now is to make yyin point to our string in memory before
yylex() starts the Lexer. Once the yyparse() function calls yylex(), that can be done
in the Parser file generated by Yacc: ytab.c. All we need is:

• to modify the yyparse function
from int yyparse(void)
to int yyparse(char *str)

in order to let yyparse receive the string to be scanned as a parameter;

• to add yyin=str; to the body of the yyparse function, but before yylex is
invoked.

13refer to 3.3 The myfunc.c redefinitions file

INESC 2361 IQS Technical Reference Manual 22

Figure 3.1 and 3.2 show yyparse as generated by Yacc and after these
modifications, respectively.

/* yyparse AS GENERATED BY YACC */

/*

** yyparse - return 0 if worked, 1 if syntax error not recovered from

*/

int

yyparse()

{

 register YYSTYPE *yypvt; /* top of value stack for $vars */

 unsigned yymaxdepth = YYMAXDEPTH;

 /*

 ** Initialize externals - yyparse may be called more than once

 */

 yyv = (YYSTYPE*)malloc(yymaxdepth*sizeof(YYSTYPE));

 yys = (int*)malloc(yymaxdepth*sizeof(int));

 /* REMAINING yyparse CODE */

}

Figure 3.1 - yyparse as generated by Yacc

/* yyparse AFTER MODIFICATIONS */

/*

** yyparse - return 0 if worked, 1 if syntax error not recovered from

*/

int

yyparse(char *str) /* HEADER REDEFINITION */

{

 register YYSTYPE *yypvt; /* top of value stack for $vars */

 unsigned yymaxdepth = YYMAXDEPTH;

 /*

 ** Initialize externals - yyparse may be called more than once

 */

 yyv = (YYSTYPE*)malloc(yymaxdepth*sizeof(YYSTYPE));

 yys = (int*)malloc(yymaxdepth*sizeof(int));

 yyin = str; /* yyin REDIRECTION */

 /* REMAINING yyparse CODE */

}

Figure 3.2 - yyparse after modifications

INESC 2361 IQS Technical Reference Manual 23

3.2 Output in the Lexer and in the Parser

Output in the lexyy.c and in the ytab.c generated files must be also carefully
controlled. By default, stdout is used. Once that is unacceptable in a WINDOWS 3.1 DLL,
we must avoid stdout based output.

In the Parser generated file, ytab.c, all the code that writes to the stdout is isolated
between the #if YYDEBUG and #endif pre-processor directives. Therefore, compiling
the file without defining YYDEBUG solves the problem (there's an exception concerning the
function yyerror; see section 3.3 for more details).

In the Lexer generated file, lexyy.c, the #if LEXDEBUG and #endif pre-processor
directives define almost every code that writes in the stdout, and like in ytab.c, not
defining LEXDEBUG during compilation prevents access to stdout. However, there are also
three other situations that must be handled:

1. the output macro must be redefined:

from # define output(c) putc(c,yyout)

to # define output(c) myputc(c)

because yyout is declared as FILE *yyout = {stdout};
The myputc function is:

int myputc()

{

 return(1);

}

and like mygetc is defined in the myfun.c file14

2. the ECHO macro, defined as # define ECHO fprintf(yyout, "%s",yytext),
should not be used anywhere in the lexyy.c file (it's enough not to use it in the
action C code for a pattern in the iqs.l file);

3. the last four lines of the function yylex are:

default:

fprintf(yyout,"bad switch yylook %d",nstr);

} return(0); }

/* end of yylex */

and so the call to fprintf must be avoided by nesting that line in a comment,
for instance.

14refer to 3.3 The myfunc.c redefinitions file

INESC 2361 IQS Technical Reference Manual 24

3.3 The myfunc.c redefinition file

The file myfunc.c contains the definition of the mygetc and myputc functions as
well as the redefinition of the yyerror function used by ytab.c and the redefinition of
the yywrap function used by lexyy.c.

By default, the yyerror function, called in some error situations during lexical
analysis, prints a message in the stdout. Because we must avoid that in the DLL
environment, we redefined the function using a pre-processor directive to code the
environment in which it is being executed.

The yywrap function tells what to do when encountering the end of the string (or
the end of file when yyin is a FILE* pointing to stdin) being scanned. Returning 1 makes
the scanner returns a zero token to report the end of the string. This is the default
behaviour but this redefinition makes sure that happens.

The contents of the file myfunc.c follow:

int mygetc(char * strin)

{

 int c;

 return(c=*strin);

}

int myputc()

{

 return(1);

}

int yyerror(char *s)

{

#ifdef __DOS__

return 1;

#else

 (void)printf("Error: %s\n",s);

#endif

}

int yywrap()

{

 return 1;

}

3.4 Importing malloc and realloc

The first line of code of the file ytab.c is:

extern char *malloc(), *realloc();

INESC 2361 IQS Technical Reference Manual 25

and it must be nested inside a comment if we want to successfully compile ytab.c
because

#include "actions.h"

already includes the libraries for those functions and being that include directive in
the definition section of iqs.y, is copied verbatim to the beginning of ytab.c.

3.5 The #define __DOS__ directive

The automatic code generation using Lex & Yacc took place in a UNIX
environment (although DOS versions of these tools can also be found).

Developing the Parser Layer in UNIX allowed for a quick and easy automation of
all the previously discussed modifications one needed to perform in order to use the
generated code in a DLL: a simple script using common UNIX tools (as head and sed)
was enough. It even was possible to test the parser, checking for grammar construction
errors as well as scanning problems.

Although the semantic actions were not implemented at this phase, their prototypes
were more or less stable since the design phase and so we could have calls to semantic
actions executing nothing. After all, we just wanted to simulate the behaviour of the
parser. Their prototypes, however, already reflected some details of the DLL C code
style, namely the use of FAR pointers as parameters.

Because FAR pointers were unknown in the UNIX world (or any other
environment not defining that variant), we ended with two prototype definitions for each
semantic action: one with FAR type pointers (to be compiled when building the DLL in
the DOS world) and other with "simple" pointers (UNIX compatible).

The #define __DOS__ and #endif directives allowed for this "double identity"
for the semantic actions. Later, when the body of the semantic actions was fully
implemented, we could still test just the parsing mechanism because this method could
also be used to deactivate the code we didn't want to be compiled (and therefore
executed).

In fact, everything we wanted not to be accessible on the UNIX side or in the DOS
side could be under this kind of control: to compile the code nested between the
#define __DOS__ and #endif, it would be enough to make the __DOS__ symbol a C
preprocessor parameter.

The files actions.h and actions.c, the header file and the implementation file of the
semantic actions, respectively, make full use of the #define __DOS__ directive. For
instance, consider the Figure 4.1 and Figure 4.2, with extracts from actions.h and
actions.c.

#ifdef __DOS__

void iqsSAgetAoidsBellowClass(char FAR *);

#else

void iqsSAgetAoidsBellowClass(char *);

#endif

Figure 4.1 - a "double identity" semantic action prototype

INESC 2361 IQS Technical Reference Manual 26

#ifdef __DOS__

void iqsSAgetAoidsBellowClass(char FAR * class)

#else

void iqsSAgetAoidsBellowClass(char * class)

#endif

{

#ifdef __DOS__

 if (iqsState.iqsBatchOn && batchIqsSemanticError()) return;

 /* REMAINING OF iqsSAgetAoidsBellowClass */

#endif

}

Figure 4.2 - a "double identity" semantic action body

3.6 The Large model of compilation

The modifications performed over the code generated from Lex & Yacc still aren't
enough to make sure the code will execute in a DLL environment. The code will
compile, but probably will hang the system with a General Fault Protection Error due to
bad memory access. DLLs have strict rules concerning memory references and
operations, namely:

• external, global or static variables reside in the DLL Data Segment; by default, if
not explicitly FAR, a memory reference in a DLL is considered to be made
relatively to the beginning of his Data Segment, and so taking the address of
those type of variables and using it is peaceful;

• function parameters and local variables use the Stack Segment of the caller of
the DLL (the DLL has no Stack Segment).

As we saw, the code automatically generated by Lex & Yacc (UNIX or DOS
versions) does not use FAR pointers. Therefore, if somewhere in that code the address of
a function parameter or a local variable is taken, the Stack Segment reference will be
lost, only remaining the Offset part, which will be assumed to be relative to the beginning
of the DLL Data Segment! This will almost certainly bring problems.

Very often, the compiler will detect these situations and so one could think of
modifying in situ the code generated by Lex & Yacc. Generated code, however, should
not be modified unless there is no alternative.

A simple and effective way to solve the problem is to compile with the Large
model. Therefore, all pointers are FAR by default, and we don't need to care about the
possibility of having the generated code to violate the DLL strict memory access
philosophy.

INESC 2361 IQS Technical Reference Manual 27

Using the Large memory model does not mean that the code implementing the
Semantic actions and the IQS API no longer should follow the DLL rules. In fact, if we
compromise with those rules while coding is taking place we can think of using another
Parser in the future, perhaps already respecting those rules; therefore, we would have the
other modules ready to be plugged, without the effort of converting them into DLL
conforming code.

INESC 2361 IQS Technical Reference Manual 28

Part III

4 IQS main data structures (iqs.h)

The data types, constants, macros and variables of the IQS module can be divided
in two complementary subsets:

• the one automatically generated by Lex & Yacc, scattered among lexyy.c,
ytab.h and ytab.c files (this set is exclusively related with the Lexical Analysis
and Parsing functionalities);

• the other, supporting the search and retrieval of information from the repository,
as well as the information exchange between the Visual Basic Interface Layer
and the C Layer.

Concerning the Lex & Yacc related subset, all the relevant issues were previously
discussed in 2 IQL Parsing and 3 Importing the generated code to a Windows DLL.

The focus will now be on the main implementation issues of the second sub-set,
whose data type definitions mainly lie at the iqs.h header file.

4.1 Handling the repository information (the Set approach)

Basically, the repository search functions being part of the IQS API (yet to be
discussed) will try to recover Sets of objects which obey to some common properties.
Therefore, an implementation of the Set Abstract Data Type is opportune.

Such an implementation should provide for:

• Convenience - easy access and management of the the physical layout;

• Efficiency when performing basic operations over instances of the Set data type,
such as creating a set, writing on it, reading it, destroying it, etc.

These are inherently conflicting issues, inevitably introducing some implementation
compromises. The next two sections will turn on some light over these subjects.

4.1.1 Dynamic Arrays implementing Sets

Dynamic Arrays are one possible layout for the Set Abstract Data Type.
In the C programing language, implementation of the Dynamic Array

concept is straightforward15:

15This type definition conforms to the Dynamic Array abstract concept established in 7 IQS data
structures design on [IQS-2.1].

INESC 2361 IQS Technical Reference Manual 29

typedef struct {

 long index; /* index >=0 means index+1 objects are presently in the array */

 /* index <=-1 means array is empty */

 void *array; /* generic pointer to a memory block containing the array */

} Dynamic_Array;

Thus, the array field is discarded whenever the index field ≤ -1, that is,
the pointer is assumed no to be tight with an allocated memory block.

Instead of using the Dynamic_Array data type as the unique type for all
Sets used by IQS, it was decided to define as much data types as different kinds of
Sets one could need (in the IQS context, naturally). This was intended to increase
code readability, not only during implementation but also whenever maintenance
is needed.

 The next is an extract from the iqs.h file, with the type definition for all
kinds of Sets used by IQS:

// a set of ObjIDs

typedef struct {

 long int index;

 ObjID FAR *objids;

} ObjID_list;

// a set of AOIDs

typedef struct {

 long int index;

 AOID FAR *aoids;

} AOID_list;

// a set of names (of attributes, facets, links, etc)

typedef struct {

 long int index;

 char FAR *names;

} Name_list;

// a set of sets of names (of attributes, facets, links, etc)

typedef struct {

 long int index;

 Name_list FAR *list;

} Name_list_list;

// a set of values (of attributes, facets, links, etc);

// main diference between Name_list is the conceptual distance field

typedef struct {

 long int index;

 int distance;

 char FAR *info;

} Array_list;

INESC 2361 IQS Technical Reference Manual 30

// a resolved query is a pair (querytext, queryaoids) with

// queryaoids being a set of type AOID_list

typedef struct {

 char FAR * querytext;

 AOID_list queryaoids;

} ResolvedQuery;

// an History is a set of resolved queries

typedef struct {

 long int index;

 ResolvedQuery FAR * queries;

} Query_list;

Dynamic Arrays implemented this way have pros and cons:

• main advantage: provide for a clean and easy implementation of the IQS

API (convenience); remember that accessing the information field is the
same as accessing a static array: a direct access can be made; no tricky
linked-list (or even more complex data types) access and maintenance
operations are involved;

• main disadvantage: whenever the information field needs to be
expanded, all the field must be reallocated; this can be a serious drawback if
reallocation is an often operation (poor efficiency); memory fragmentation
could also be an obstacle to reallocation: there could simply do not exist a
contiguous memory block big enough to support the reallocation, but the
sum of all the tiny free blocks scattered in memory could provide the
amount of space needed (linked-lists are a more robust implementation in
these circumstances).

Trying to avoid the overhead resulting from repeatedly reallocating a
memory block by small pieces, the IQS API used some trivial solutions: in many
circumstances a block known to be big enough to cope with all the demands is
allocated; other times, if reallocation is really necessary, a big block is requested,
trying to delay the next reallocation.

4.1.2 A basic Set API

Given the Dynamic Array based type definitions for all kinds of Sets IQS

can use, one can easily set up a small package of functions implementing the most
common set operations.

Every function should be able to work over different Sets, that is, it should
provide for a basic level of polymorphism. In C, a possible way to achieve it is to
receive parameters void* (or char*) typed and then, based on a special
parameter, a set_type integer code, to make the appropriate casts. Every
function in the Set API is based in this principle, and therefore has the next basic
internal structure:

INESC 2361 IQS Technical Reference Manual 31

int aSetOperation (void FAR *one_set, void FAR *other_set, int set_type)

{

 switch (set_type) {

 case TYPE1 : /* apply TYPE1 cast to parameters and perform operation on them */

 break;

...

 case TYPEn : /* apply TYPEn cast to parameters and perform operation on them */

 break;

 }

}

Not every set operations are defined for all of the Set types in iqs.h,
because some of them never needed those operations during the IQS

implementation process (in fact, all operations emerged as they were needed and
to extend -if necessary- the actual functionalities to other Set types should be a
trivial task). Therefore, in the Set API description the "type possible values" item
will show the Set types for which the operation being described is defined (in that
context, the Set types are integer constants defined in iqs.h).

The "secondary effects" item explains what happens to the in-out
parameters when the function does not return IQS_SUCCESS.

The Set API follows:

void iqsCleanSet(void FAR *set, int type)

This function inspects the index field to check if is greater than -1. If so, it
deallocates the information field and resets index to -1. Otherwise, leaves the set
structure intact.

type possible values:
• IQS_OBJIDLIST
• IQS_AOIDLIST
• IQS_ARRAYLIST
• IQS_NAMELIST
• IQS_NAMELISTLIST
• IQS_QUERYLIST

int iqsCopySet(void FAR *source, void FAR *destiny,
 int type)

This function makes destiny a copy of source. Primitive contents of
destiny are always cleaned and source left intact.

INESC 2361 IQS Technical Reference Manual 32

type possible values:
• IQS_AOIDLIST
• IQS_ARRAYLIST
• IQS_NAMELIST

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans destiny.

int iqsSetDifference(void FAR *a, void FAR *b,
 int type)

Perform the set difference between a and b, placing the final result in a, that is,
a=a-b.

type possible values:
• IQS_AOIDLIST
• IQS_ARRAYLIST
• IQS_NAMELIST

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans a.

int iqsSetIntersection(void FAR *a, void FAR *b,
 int type)

Makes a the intersection set between a and b. The intersection is made at the cost
of iqsSetDifference because aÇb=a-(a-b).

type possible values:
• IQS_AOIDLIST
• IQS_NAMELIST

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans a.

INESC 2361 IQS Technical Reference Manual 33

int iqsSetUnion(void FAR *a, void FAR *b, int type)

Performs a=aÈb.

type possible values:
• IQS_AOIDLIST
• IQS_NAMELIST

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans a.

int iqsMakeSet (void FAR *bag, void FAR *set,
 int type)

Makes set a copy of bag but without repeated objects.

type possible values:
• IQS_AOIDLIST
• IQS_ARRAYLIST
• IQS_NAMELIST
• IQS_NAMELISTLIST

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans set.

4.2 The ParserState data type

All the relevant data structures defining, at a precise moment, the state of the IQS

querying process, are kept in a record16. Gathering that information into a unique, well
known, C structure, allows for a better control over the IQS state because when the state
changes, one expects to see the changes reflected only in that structure. To verify the
present IQS state it is enough to check the data contained in that structure.

16see also 7 IQS data structures design at [IQS-2.1].

INESC 2361 IQS Technical Reference Manual 34

The ParserState data type implements this view and the variable iqsState is a
(unique) global instance of that type. This structure encompasses Interface related items
as well as Parser related ones. However, nor the Interface neither the Parser is
exclusively controlled by its contents:

• Visual Basic Interface control and management details do not cross the Visual
Basic/C frontier; ParserState only has some fields with the contents of some
Interface objects (as list panes, for instance); it also keeps the enable-disable
values for the majority of the buttons of the Interface. The semantic actions of
the Parser are responsible for keeping these fields with the right contents,
conforming the deterministic automata embedded in the Parser; the only thing
Visual Basic has to do when Parser Layer returns control, is to call appropriate
functions to recover the values of some critical fields and to refresh the Interface
accordingly.

• obviously, Lex & Yacc generated data structures controlling Lexical Analysis and
Parsing activities are left intact among the generated code; in fact, none of the
fields of ParserState controls the parsing activity, being instead a direct
reflection of the semantic actions; in that sense, the very internal state of the
(Lexer, Parser) pair is ignored; only the "external" state, resulting from the
internal operations is kept in ParserState.

Figure 5 depicts the ParserState data type declaration, extracted from iqs.h. The
meaning of each field follows:

• AOID_list iqsQS: query state (the set of objects presently solving the query);

• AOID_list iqsQSC: compounds state (a set of objects being compounds);

• Array_list iqsQSV: a set of generic attribute values, or class attributes17 values, or
facet values; in Assisted Mode, these will be the contents of the interface list-
pane presenting the available values to chose from, depending on having
previously selected a generic attribute or a class attribute or a facet, respectively
in another list-pane (refer to iqsAOGAttribs, iqsCLAAttribs and iqsFACAttribs fields
description);

• Name_list_list iqsListList: a set in which each element is himself another set; to
fully understand the need for this field refer to the IQS API description of the
iqsGetClassAttributes, iqsGetSourcesAndLinks and iqsGetSourcesAndLinksBySinks

functions, on section 5 The IQS API.

• char FAR * iqsQuery: this field matches, at every moment, the part of the query
text already parsed (and thus solved); in Batch Mode, both this field and the
complete query phrase being solved will be the same18 at the end of the

17also called class attributes
18except that iqsQuery will always have IQL tokens uppercased (this does not refer to identifiers,
however); also, in the case of the query being derived from a non-kernel template, references to
other queries may have been converted from local to global ones (recall 6 The History at [IQS-
2.1]).

INESC 2361 IQS Technical Reference Manual 35

typedef struct {

 AOID_list iqsQS;

 AOID_list iqsQSC;

 Array_list iqsQSV

 Name_list_list iqsListList;

 char FAR * iqsQuery;

 Query_list iqsQueryHistory;

 VBState iqsVBState;

 Name_list iqsAOGAttribs;

 Name_list iqsAOGAttribsPrevious;

 Name_list iqsFACAttribs;

 Name_list iqsFACAttribsPrevious;

 Name_list iqsCLAAttribs;

 Name_list iqsCLAAttribsPrevious;

 Name_list iqsSLCNames;

 Name_list iqsPHANames;

 Name_list iqsPHANamesPrevious;

 Name_list iqsCRLNames;

 Name_list iqsCRLNamesPrevious;

 Name_list iqsLNKNames;

 bool AOGExplored;

 bool FACExplored;

 bool CLAExplored;

 bool SLCExplored;

 bool PHAExplored;

 bool IsCompoundPressed;

 bool CRLExplored;

 bool BelongToCompoundPressed;

 AOID_list iqsRM;

 BOOL iqsBatchOn;

 long int iqsNextLocalHIndex;

} ParserState;

Figure 5 -- the ParserState data type declaration

resolution process; also, at the end of the query solving, in Assisted Mode,
iqsQuery will contain the submitted query phrase after redundancy and
incompleteness19have been purged; so, whatever mode of operation considered,
an internal synthesized query will be kept at iqsQuery and, in the case of a
successful resolution, it will be added to the History, together with the objects
which were the query solution, contained by the iqsQS field;

• Query_list iqsQueryHistory: this field stands for the History of the present IQS

session; refer to section 4.2.1 for a complete description of all the related
implementation details;

• VBState iqsVBState: this field keeps the enable/disable state of all the Visual Basic
layer buttons (as well as some list boxes and menus) under the control of

19recall 2.4.1 Aided Mode IQL sub-grammar issues.

INESC 2361 IQS Technical Reference Manual 36

the deterministic automata of the IQL grammar; to get a more detailed
description of these field, refer to section 4.2.2;

• Name_list iqsAOGAttribs, Name_list iqsFACAttribs, Name_list iqsCLAAttribs,
Name_list iqsSLCNames, Name_list iqsPHANames, Name_list iqsCRLNames, Name_list

iqsLNKNames: these fields are the sets of generic attributes, facets, class attributes,
software life cycles, phases, characteristic relations and links, respectively,
available to be chosen from a dedicated list-pane20;

• bool AOGExplored, bool FACExplored, bool CLAExplored, bool SLCExplored, bool

PHAExplored, bool CRLExplored: these flags are enabled when the refinement by
generic attributes, facets, class attributes, software life cycles, phases or
characteristic relations, respectively, is found to be finished; in this situation,
preventing further attempts to refine by these paths is done by inspecting the
respective flags;

• bool IsCompoundPressed, bool BelongToCompoundPressed: these are flags enabled
whenever the respective buttons are pressed; when that happens, those buttons
will not ever be allowed to be enabled again because the associated action can be
performed only once.

• AOID_list iqsRM: the only purpose of this field is to receive a copy of a temporary
or final query solution, kept by iqsQS, in order to let appropriate functions21

handle those results and submitting them to the Result Manager;

• BOOL iqsBatchOn: this is a flag activated when IQS enters the Batch Mode; mainly,
this flag allows for flow control inside the semantic actions shared code,
preventing Assisted Mode specific code to be executed.

• long int iqsNextLocalHIndex: this field keeps track of the next available local
index during some History operations; his usefulness is fully explained at section
4.2.1

Having specific fields to keep objects that are compounds (iqsQSC) or to be used by
Result Manager related operations (iqsRM), does not necessarily mean that during every
query resolution, their contents are meaningful. That depends on the Template format of
the query presently being solved. This also applies to the flags AOGExplored, FACExplored,
CLAExplored, SLCExplored, PHAExplored, CRLExplored, IsCompoundPressed and
BelongToCompoundPressed, essentially related with visual features used only at some specific
Templates.

4.2.1 Implementation details of the History

The C data types implementing the History abstract definition provided at
chapter 6 of [IQS-2.1] are22:

20see also section 4.2.2 The VBState data type.
21see section 7 The IQS Visual Basic related API.
22see also section 4.1.1 Dynamic Arrays implementing Sets.

INESC 2361 IQS Technical Reference Manual 37

// a solved query is a pair (querytext, queryaoids) with

// queryaoids being a set of type AOID_list

typedef struct {

 char FAR * querytext;

 AOID_list queryaoids;

} ResolvedQuery;

// an History is a set of resolved queries

typedef struct {

 long int index;

 ResolvedQuery FAR * queries;

} Query_list;

As section 4.1.1 already referred, these data types are extensions to the
Dynamic_Array basic Set data type. Also, as 4.2 showed, the field iqsQueryHistory
of the ParserState structure implements the IQS History.

One important issue concerning the management of the present IQS History
is the one related with adding to it previously solved queries, kept in a saved
History. This possibility has been envisioned at the chapter 6 of [IQS-2.1], which
even described what had to be done in order to have the local references made by
non-kernel queries, at the imported History, to become global ones, at the
global23 History.

On the basis of that intended behaviour, the next three macros are used to
maintain the local and global references aside:

• #define iqsGetNextGlobalHIndex() (iqsState.iqsQueryHistory.index+1)

This macro retrieves the next valid global index (or reference), that is, the
next "vacancy" on the History. Every time a query is successfully solved, it
is added to the History, and his text will have been prefixed with #NUMBER
where NUMBER will be the next global index value, as given by the macro.
This is true even for those queries coming from an imported History (his
text already contained a local prefix, which however will only be used in
local references).

• #define iqsSetNextLocalHIndex(index) iqsState.iqsNextLocalHIndex=index

This macro is called to set the iqsNextLocalHIndex field of iqsState to zero,
every time a batch resolution is started. The Batch Mode always defines a
local context, no matter the state of the global History and thus needs the
proper index prefix on every query phrase. On the opposite side, the
Assisted Mode always operates, by default, on a global context because it
does not require the users to provide for an index to the query being
interactively solved, instead choosing the next global valid one.

23that is, the History resulting from joining the loaded and the present one.

INESC 2361 IQS Technical Reference Manual 38

• #define iqsGetNextLocalHIndex() (iqsState.iqsNextLocalHIndex)

In Batch Mode, every time a query phrase recognition starts, the mandatory
index prefix24 is checked to see if it matches the one expected in that local
context, given by this macro.

4.2.2 The VBState data type

In Assisted Mode, besides providing for the contents of the various Visual
Basic objects presented at the interface layer, the underlying C layer also must
enable and disable them. In fact, that is how the C code implementing the IQL

grammar parsing mechanism, manages to control, in a deterministic way, the
interface.

Figure 6 presents the C data type definition of the VBState structure,
containing the necessary fields to control all the relevant interface objects on
Assisted Mode. The meaning of each field is also explained.

typedef struct {

 BOOL outClasses; /* enable/disable the class hierarchy tree */

 BOOL cmdGEN; /* enable/disable the generic attributes button */

 BOOL cmdFAC; /* enable/disable the facets button */

 BOOL cmdATT; /* enable/disable the class attributes button */

 BOOL lstAttrName; /* enable/disable the list-pane showing generic */

 /* attributes, facets, class attributes, software*/

 /* life cycles, phases, characteristic relations,*/

 /* and link names */

 BOOL lstAttrValue;/* enable/disable the list-pane showing generic */

 /* attributes, facets or class attributes values */

 BOOL cmdCRL; /* enable/disable the characteristic relations button */

 BOOL cmdISC; /* enable/disable the is-compound button */

 BOOL cmdBLC; /* enable/disable the belong-to-compound button */

 BOOL cmdCHECK; /* enable/disable the check button */

 BOOL cmdABORT; /* enable/disable the abort button */

 /* the next eight buttons enable/disable the */

 /* access to a specific template */

 BOOL cmdT1;

 BOOL cmdT2;

 BOOL cmdT3;

 BOOL cmdT4;

 BOOL cmdT5;

 BOOL cmdT6;

 BOOL cmdT7;

 BOOL cmdT8;

 BOOL lstHistory; /* enable/disable access to history visualization*/

 BOOL cmdSLC; /* enable/disable the software life cycles button*/

 BOOL cmdPHA; /* enable/disable the phases button */

 BOOL spnFAC; /* enable/disable the conceptual distance scrollbar */

 BOOL mnuHST; /* enable/disbale access to the History menu */

 BOOL mnuDSP; /* enable/disbale access to the Display menu */

} VBState;

Figure 6 - The VBState data type

24of the format #NUMBER.

INESC 2361 IQS Technical Reference Manual 39

Note that the enabling and disabling of the VBState items takes place at the
body of the semantic actions code, because being embedded in the IQL grammar,
these ones are context sensitive and thus know exactly which visual items to
enable or to disable, at any step of the query recognition process.

5 The IQS API (iqs.c)

Until now, we have refered to the IQS API as the set of functions callable from the
semantic actions code and exclusively concerned with retrieving objects from the
repository, by invoking the appropriate functionalities of the SOURLIB software layer,
during query resolution.

However, in practical terms, the C code file implementing the IQS API, iqs.c,
includes also other sets of functions, some of them offering services to the IQs API

functions, and others making possible to the objects collected from the repository by the
IQS API to access the interface upper layer and even to control its behaviour. These
other functionalities group themselves into three distinct small sets, inside the iqs.c file:

• a basic Set API, already presented at 4.1.2;

• an Auxiliary IQS API, to be discussed at 5.1;

• an IQS Visual Basic related API, whose description is postponed until chapter 7;

The following is a description of the IQS API, similar to the one provided at
Appendix B of [IQS-2.1]. Note the "Secondary effects" field, which explains what
happens to the in-out parameters when the function returns some specific values
(generally all but IQS_SUCCESS25).

int iqsGetHierarchyAoids(AOID_list FAR *aoid_list,
 char FAR *class)

Given a class name, this function puts in aoid_list all the AOIDs of the class
sub-hierarchy starting at class. Based on eraGetObj calls for each class bellow the
one provided, iqsGetHierarchyAoids will remove, from aoid_list, the
system-object TUTTO (used by Comparator-Modifier as a upper-bound to close the
lattice - see [CM-1.4 1993]), if found during the search.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no objects found for the selected class hierarchy;
• IQS_SUCCESS - operation successful.

25as already defined at 4.1.2 A basic Set API.

INESC 2361 IQS Technical Reference Manual 40

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
aoid_list

int iqsGetAOGAttribs (AOID_list FAR *aoid_list,
 Name_list FAR *aog_attrs)

iqsGetAOGAttribs will search the generic attributes for whom the objects in
aoid_list define a value, that is, for each object in aoid_list, the "AOG" class is
inspected via eraGetObject in order to check if each generic attribute has a well-
defined non-empty value. As soon as a value has been found for all the generic attributes,
the search is stopped (this could happen at the very first object of aoid_list if this
object defines a non-empty value for all of the generic attributes). The defined generic
attributes (except "AOID") are returned via the in/out parameter aog_attrs.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no generic attributes defined (except "AOID");
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
aog_attrs.

int iqsGetAOGValues(AOID_list FAR *aoid_list,
 Array_list FAR *attr_values)

For each object in aoid_list, iqsGetAOGValues inspects the "AOG" class
via eraGetObject, checking for the value the generic attribute passed in
attr_values->info assumes. The goal is to make attr_values the set of
those values.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - generic attribute attr_values->info unknown;
• IQS_NOVALUES - generic attribute attr_values->info undefined;
• IQS_SUCCESS - operation successful.

INESC 2361 IQS Technical Reference Manual 41

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND,
IQS_NOVALUES: cleans attr_values.

int iqsGetFacets(AOID_list FAR *aoid_list,
 Name_list FAR *facets)

iqsGetFacets will search the facets for whom the objects in aoid_list
define a value, that is, for each object in aoid_list, the "FACETS" class is inspected
via eraGetObject in order to check if each facet has a well-defined non-empty value.
As soon as a value has been found for all the facets, the search is stopped (this could
happen at the very first object of aoid_list if this object defines a non-empty value
for all of the facets). The defined facets are returned via the in/out parameter facets.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no facets defined;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
facets.

int iqsGetFacetsValues(AOID_list FAR *aoid_list,
 Array_list FAR *facet_values)

For each object in aoid_list, iqsGetFacetsValues inspects the
"FACETS" class via eraGetObject, checking for the value the facet in
facet_values->info assumes. The goal is to make facet_values the set of
those values.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - facet facet_values->info unknown;
• IQS_NOVALUES - facet facet_values->info undefined;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND,
IQS_NOVALUES: cleans facet_values.

INESC 2361 IQS Technical Reference Manual 42

int iqsGetClassAttributes(AOID_list FAR *aoid_list,
 Name_list_list FAR *class_atts_list)

iqsGetClassAttributes will search the class attributes for whom the
objects in aoid_list define a value, that is, for each object in aoid_list, the
"AOG" class is inspected via eraGetObject in order to retrieve the value of the
"CLASS" generic attribute; the class whose name is given by that value is then inspected,
once again using eraGetObject, and all its attributes, having a well-defined non-
empty value, are retrieved into a set of names; this set is object specific and so this task
must always be done for every object of aoid_list. Since a set of class attributes is
eventually needed for each object, the in/out parameter, class_atts_list, is a set
of set of names.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no class attributes defined;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
class_atts_list.

int iqsGetAttribsValues(AOID_list FAR *aoid_list,
 Array_list FAR *attr_values)

For each object in aoid_list, iqsGetAttribsValues inspects the "AOG"
class via eraGetObject, checking for the value of the "CLASS" generic attribute; the
class whose name is given by that value is then inspected, once again using
eraGetObject, in order to retrieve the value of the class attribute originally contained
in attr_values->info. The goal is to make attr_values the set of the values
obtained that way.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - class attribute attr_values->info unknown;
• IQS_NOVALUES - class attribute attr_values->info undefined;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND,
IQS_NOVALUES: cleans attr_values.

INESC 2361 IQS Technical Reference Manual 43

int iqsGetSLCs(AOID_list FAR *aoid_list,
 Name_list FAR *slcs)

For each object in aoid_list, iqsGetSLCs inspects the "PRJ" class via
eraGetObject, checking for a well-defined non-empty value of the "SLC" (Software
Life Cycle) attribute. At the end, slcs will contain the Software Life Cycles retrieved
that way.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no software life cycles defined;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND:
cleans slcs.

int iqsGetPHAs(AOID_list FAR *aoid_list,
 Name_list FAR *phas,
 Name_list FAR *slcs)

Firstly, iqsGetSLCs is called in order to get into slcs the Software Life Cycles
of the aoid_list objects. After that, iqsGetPHAsBySLC will check, for each
Software Life Cycle, his specific Software Life Cycle Phases. At the end, phas will
contain the Software Life Cycles Phases retrieved that way.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no software life cycles or no phases defined;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND:
cleans phas and slcs.

INESC 2361 IQS Technical Reference Manual 44

int iqsGetPHAsBySLC(Name_list FAR *phas_list,
 char FAR *slc)

Given a Software Life Cycle slc, conGetSLCPHA is invoked in order to
retrieve all the Software Life Cycle Phases of that Software Life Cycle into
phas_list.

Return values:

• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no phases found for the software life cycle slc;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
phas_list;

int iqsGetAoidsBySLC(AOID_list FAR *aoid_list,
 char FAR *slc)

For each object in aoid_list, iqsGetAoidsBySLC inspects the "PRJ" class
via eraGetObject, checking for the value of the "SLC" (Software Life Cycle)
attribute. At the end, aoid_list will keep only the objects for whom the value of the
"SLC" attribute equals the slc parameter.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOAOIDSSLCS - no objects found with any software life cycle;
• IQS_NOAOIDSSLC - no objects found with slc;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOAOIDSSLCS,
IQS_NOAOIDSSLC: cleans aoid_list.

INESC 2361 IQS Technical Reference Manual 45

int iqsGetSLCsByPHA(Name_list FAR *slcs_list,
 char FAR *pha)

For each Software Life Cycle in slcs_list, calls iqsGetPHAsBySLC
retrieving all its Phases. Then, it checks if pha is among those Phases. At the end,
slcs_list will keep only those Software Life Cycle containing pha.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no software life cycles found with pha;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
slcs_list;

int iqsGetCompounds(AOID_list FAR *aoid_list)

For each object in aoid_list, iqsGetCompounds calls conGetMbr once,
verifying if it returns A_SUCCESS, in wich case the object is assumed to be a compound
object. At the end, aoid_list will keep only those objects which passed the previous
test, that is, those objects being compounds.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no compounds found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans aoid_list.

int iqsGetCaractRel(AOID_list FAR *aoid_list,
 Name_list FAR *crls)

For each object in aoid_list, iqsGetCaractRel calls conGetMbrLnk in
order to retrieve a set of ObjIDs, each one standing for a Characteristic Relation.
conGetLnk will then allow for each one of those ObjIDs to be maped into a string:

INESC 2361 IQS Technical Reference Manual 46

the name of the Characteristic Relation. In the end, crls will contain the set of
Characteristic Relation names retrieved as described.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no characteristic relations found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
crls.

int iqsGetClustersByCaractRel(
 AOID_list FAR *aoid_list,
 char FAR *crl)

For each object in aoid_list, iqsGetClustersByCaractRel calls
conGetMbrLnk in order to retrieve a set of ObjIDs, each one standing for a
Characteristic Relation. conGetLnk will then allow for each one of those ObjIDs to
be maped into the name of the respective Characteristic Relation. If the parameter crl
matches at least one of these Characteristic Relations, then the object currently under
survey is considered to be a Cluster (being crl one of his Characteristic Relation). In
the end, aoid_list will keep only the objects being Clusters.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no clusters found with any Characteristic Relation;
• IQS_NOVALUES - no clusters found with the Characteristic Relation crl;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND,
IQS_NOVALUES: cleans aoid_list.

int iqsGetClaoByMember(AOID_list FAR *aoid_list)

The objects that aggregate the ones in aoid_list, are retrieved and placed
there. conGetMbr is the low-level functionality on which iqsGetClaoByMember
mainly relies for that purpose.

INESC 2361 IQS Technical Reference Manual 47

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or uknown error; operation aborted;
• IQS_NOTFOUND - no compounds found;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans aoid_list.

int iqsGetMemberByClao(AOID_list FAR *aoid_list)

For each object in aoid_list, iqsGetMemberByClao calls conGetMbr,
retrieving all his members. At the end, aoid_list will be the set of all the objects
contained by the ones initialy there.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no compounds found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans aoid_list.

int iqsGetSources(AOID_list FAR *aoid_list)

For each object in aoid_list, iqsGetSources calls conGetLnk, in order
to check if the current object is source of some link. At the end, aoid_list will keep
only the source objects.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no sources found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans aoid_list.

int iqsGetSourcesAndLinks(AOID_list FAR *aoid_list

INESC 2361 IQS Technical Reference Manual 48

 Name_list_list FAR *links_set_list)

For each object in aoid_list, iqsGetSourcesAndLinks calls
conGetLnk, in order to check if the current object is source of a link. If so, the set of
all the outgoing links from that object is retrieved. At the end, aoid_list will keep
only the source objects and links_set_list will contain the respective sets of
outgoing links.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no sources found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR: cleans links_set_list;
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans aoid_list and
links_set_list.

int iqsGetSourcesByLinkAndSinks(
 AOID_list FAR *aoid_list,
 char FAR *link,
 AOID_list FAR *sinks)

For each object in aoid_list, iqsGetSources calls conGetLnk, in order
to check if the current object is source of link to at least one sink in sinks. At the
end, aoid_list will keep only the objects founded to be sources in this way.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no sources found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
aoid_list and sinks.

int iqsGetSourcesAndLinksBySinks(
 AOID_list FAR *aoid_list,
 Name_list_list FAR *links_set_list,
 AOID_list FAR *sinks)

INESC 2361 IQS Technical Reference Manual 49

For each object in aoid_list, iqsGetSources calls conGetLnk, in order
to check if the current object is source of some link to some sink in sinks. If so, the set
of all the outgoing links from that object to all the sinks is retrieved. At the end,
aoid_list will keep only the source objects and links_set_list will contain the
respective sets of outgoing links to at least one of the sinks.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no sources found;
• IQS_SUCCESS - operation successful;

Secondary effects:
• IQS_PARAMERR, IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND: cleans
aoid_list and sinks.

5.1 An Auxiliary IQS API

This section describes auxiliary functions developed to handle some low-level
implementation aspects (otherwise, IQS API functions would have, internally, to deal with
them), namely:

• safe memory reallocation (mostly done to expand sets of objects);

• token retrieving from token strings based on the separator ','.

These details should be hided from the majority of the IQS API functions to take
care of them. Besides encapsulation, having functions to perform very common low-level
tasks allowed a faster implementation of the IQS API.

The next is a description of the Auxiliary IQS API:

int iqsFrealloc (void FAR **memptr, size_t memsize,
 int ptrtype)

This function reallocates a memory block. It receives the address of a void FAR
* pointer, - memptr -, the new intended size (in bytes) of the memory block tight with
memptr, - memsize -, and an integer - ptrtype -, coding the pointer type in order
to make appropriate internal casts. iqsFrealloc is based on a call to

void FAR * _frealloc (void FAR * memblock, size_t size)

of the malloc.h, Microsoft Visual C++ 1.5 library, and intends to avoid the loosing of
the pointer in reallocation, if _frealloc returns NULL and a backup of the previous
contents of the pointer has not been made.

ptrtype possible values:

INESC 2361 IQS Technical Reference Manual 50

• IQS_AOIDFARPTR
• IQS_CHARFARPTR
• IQS_NAMELISTFARPTR
• IQS_OBJIDFARPTR
• IQS_RESOLVEDQUERYFARPTR

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted (*memptr remains
intact);
• IQS_SUCCESS - operation successful (*memptr now points to the reallocated
memory block);

char FAR * iqsStrtok (char FAR *str)

Enhance the functionality of the _fstrtok function of the string.h Microsoft
Visual C++ 1.5 library:

• returns, one by one, the tokens in str even if it contains empty tokens;
remember that _fstrtok would simple ignore them; however, only the character
',' (coma) is considered to be a token delimiter;

• does not destroy the contents of str because it operates on an internal copy,
while _fstrtok overwrites the token delimiter with a '\0' character every
time it finds a token.

iqsStrtok follows the same invocation policy as _fstrtok: at the first call, the
str parameter must not be a NULL pointer, and the first token found is returned; next
calls will have to be made precisely with a NULL pointer in order to retrieve the rest of
the tokens; the function returns tokens, one by one, on successive calls; once it does not
find more tokens it will always return NULL.

Note that an empty token returned is a (char FAR *)"", that is, an empty
string. This is not the same as a (char FAR *)NULL which means that the function
cannot find more tokens in the string. For instance, the strings "" (empty string), ","
and "hello," would make iqsStrtok to return, respectively, "" and NULL, "" and
"" and NULL, "hello" and "" and NULL.

int iqsCheckWordInList(char FAR *word, char FAR *list
 ,int FAR *index, int mode)

This function is based on calls to iqsStrtok, providing different functionalities,
accordingly with the parameter mode. It has been specifically implemented to extend
iqsStrtok capabilities in handling token retrieving over strings where the delimiter is
the character ',' (coma).

mode possible values:

INESC 2361 IQS Technical Reference Manual 51

• IQS_WORD: get the indexth token in list and return it via word;
• IQS_STARTINDEX: search for the first occurrence of word in list and get
its relative position into index; if word does not exist, then, after
iqsCheckWordInList returns, the total number of tokens contained within
list (including empty tokens - ""-) will be equal to index+1;
• IQS_NEXTINDEX: like IQS_STARTINDEX, but used to retrieve the indexes of
word beyond the first occurrence in list; it can only be used after first invoking
iqsCheckWordInList with the IQS_STARTINDEX mode.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOTFOUND - no more tokens found at list;
• IQS_SUCCESS - operation successful;

int iqsGetAttrValue(char FAR *names, char FAR *name,
 char FAR *values, char FAR *value)

This function is based on calls to iqsCheckWordInList and it searches for the
index26 of name in names and then for the correspondent value in values (the
correspondent value is the one with a relative position within values equal to the
relative position of name in names). iqsGetAttrValue is almost exclusively used
to make the "projection" of the AttrName field (of the eraAttrName ERA structure
data type), over the correspondent AttrValue list, in order to get a specific pair
(name, value). If the retrieved value is a whitespace character string, it is converted
into an empty string.

Return values:
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOTFOUND - name or value could not be found in names or values,
respectively;
• IQS_SUCCESS - operation successful.

6 The IQS Semantic Actions API (actions.c)

This chapter presents the C functions implementing the Semantic Actions in the
iqs.y IQL grammar description. Besides the Semantic Actions code, the file actions.c
also contains a set of Semantic Actions related Auxiliary functions, which will be
described at 6.1.

Remember that the Semantic Actions will be the primary functions responsible for
query resolution and indirect interface control. They are based on calls to the IQS API (in
charge with getting from the SOURLIB functionalities the desired repository objects) as
well as to their auxiliary functions.

26or relative position.

INESC 2361 IQS Technical Reference Manual 52

All Semantic Actions are void functions, using a global int variable, rIQS27 to
"return" their results. This has to do with the need of testing the result from the
yyparse parsing function independently of the result of the semantic action just
executed. Therefore, it was decided to keep the return value of yyparse to reflect the
success or failure of the lexical analysis and parsing activities, and to rely on rIQS to
know how the semantic actions terminated. This avoids changing the generated code
which implements yyparse, in order to introduce return(rIQS) statements at the
proper places28.

Therefore, instead of having a topic named "Return values:", the IQS Semantic
Actions API description that follows, uses, alternatively the "Return values (rIQS):"
item. Also, the behaviour of a certain function may vary slightly from Assisted Mode to
Batch Mode and so two descriptions are given, one for each operation mode29. Note that
in the Assisted Mode description, the mentioned tokens of a query phrase enter that
phrase as a result of an interface event but in Batch Mode a complete textual description
(containing those tokens) is assumed to be provided at once.

void iqsSAcheck()

Assisted Mode behaviour:
This function is called whenever the query phrase recognition is considered to be

terminated. In Assisted Mode this will happen only explicitly by pressing the CHECK
interface button and thus introducing the token CHECK into the query phrase.
iqsSAauxAddQueryToHistory is invoked in order to add the query phrase
(presently in iqsState.iqsQuery) to the History. However, before that, in the case
of a query phrase of the TEMPLATE4 variant, iqsSAcheck must check first for the
AOIDs previously retrieved (kept in iqsState.iqsQS) and belonging to the CLAOs
being characterized (and kept in iqsState.iqsQSC); this will involve calling the
functions iqsGetMemberByClao and iqsSetIntersection.

Batch Mode behaviour:
In Batch Mode, every time a complete query phrase from the batch is recognized,

iqsSAcheck is called. The log file of the batch session will be appended with the
results of the query just solved and VBiqsResetParser will be invoked before
processing the next query.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_SUCCESS - operation successful.

27declared at iqs.h.
28see also 7 The IQS Visual Basic related API.
29remember that the semantic actions are shared between these two modes, and necessarily
certain details will be handled differently inside the same semantic action implementation code.

INESC 2361 IQS Technical Reference Manual 53

void iqsSAabort()

Assisted Mode behaviour:
This function is callable by pressing the ABORT button (and thus making the

ABORT token to enter the query phrase). VBiqsResetParser is invoked in order to
abort the query and prepare for the next query solving.

Batch Mode behaviour:
Not callable because a batch resolution terminates only when the last query has

been solved or an error occurred.

Return values (rIQS):
• IQS_SUCCESS - operation (always) successful.

void batchIqsSAcheckIndex(int index)

Assisted Mode behaviour:
Not callable. In Assisted Mode the index of a query is automatically associated

with that query as soon as the query text begins to be synthesized.

Batch Mode behaviour:
batchIqsSAcheckIndex is called every time a token of the format #index

(where index is an integer) is recognized during a batch solving of a query of any
Template variant. This function checks if the parameter index matches the next
expected History index in the local context of the present Batch session.

Return values (rIQS):
• IQS_BATCHINDEXNOTVALID - unexpected index; operation aborted; only in
Batch Mode;
• IQS_SUCCESS - operation successful.

void iqsSAinitGetAllClass (int template)

Assisted Mode behaviour:
This function is called every time one of the interface buttons #1 to #4 is pressed

(making one of the tokens of the format TEMPLATEx30 to be joined to the query text).
iqsSAinitGetAllClass will start the internal query phrase synthesis with the text
"#index TEMPLATEx GET ALL CLASS=", where index is returned by
iqsGetNextGlobalHIndex, and x, depending on the template parameter, will
assume a value among 1 and 4; iqsSAauxSetVBState will set next interface state.

Batch Mode behaviour:

30x varying from 1 to 4.

INESC 2361 IQS Technical Reference Manual 54

Except that iqsSAauxSetVBState is not called, the rest of the function acts as
in Assisted Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans iqsState.iqsQuery;

void iqsSAgetAoidsBellowClass(char FAR * class)

Assisted Mode behaviour:
This function is called after choosing a class in the hierarchy presented at

interface level, while making Template1 to Template4 query synthesis.
iqsSAgetAoidsBellowClass will call iqsGetHierarchyAoids with
iqsState.iqsQS and class as parameters in order to receive in
iqsState.iqsQS all the AOIDs bellow class. The class string will be added to
the internal query phrase being synthesized and the next interface state will be set via
iqsSAauxSetVBState.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function

behaves as in Assisted Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no objects found for the selected class hierarchy;
• IQS_SUCCESS - operation successful.

void iqsSAafterAttrTypeChoice(int type)

Assisted Mode behaviour:
In Assisted Mode, iqsSAafterAttrTypeChoice will be called after pressing

one of the buttons (coded in the type parameter) standing for the generic or class
attributes, facets, software life cycles, phases or characteristic relations. The tokens
AOGNAME, ATTNAME, FACNAME, SLCNAME, PHANAME and CRLNAME will reflect, at
the query phrase, the pressed button. If the refinement is still possible by the way just
chosen, then the respective set in iqsState, may have to be updated31, by calling
iqsSAauxInitAttrLists, in order to provide semantic assistance when choosing

31this will only happen if there was a previous refinement and the set has not been updated yet.

INESC 2361 IQS Technical Reference Manual 55

later a name or value from that set. iqsSAauxSetVBState will set the next interface
state.

Batch Mode behaviour:
Always successful because there's no need to assure semantic assistance.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no objects found with defined generic attributes, or class
attributes, or facets, or software life cycles or phases or characteristic relations;
• IQS_SUCCESS - operation successful.

void iqsSAgetAttrValues(int attrtype,
 char FAR *attrname)

Assisted Mode behaviour:
This function is called in the case of a Template1 to Template4 and Template8

query variants, after choosing one of the possible generic attributes, facets or class
attributes (coded in attrtype), from an interface list pane with their names.
iqsSAgetAttrValues will then call iqsGetAOGValues,
iqsGetFacetsValues or iqsGetAttribsValues, respectively, in order to fill
iqsState.iqsQSV with the values specific to those names.
iqsSAauxSetVBState will set the next interface state.

Batch Mode behaviour:
In Batch Mode, iqsSAgetAttrValues will immediately return if the provided

attribute or facet (attrname) is unknown or no values were found for it.
iqsSAauxSetVBState is not called; the rest of the function works as in Assisted
Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOGENATTR - generic attribute unknown; operation aborted; only

in Batch Mode;
• IQS_BATCHNOGENVAL - generic attribute without values; operation aborted;

only in Batch Mode;
• IQS_BATCHNOFACATTR - facet unknown; operation aborted; only in Batch

Mode;
• IQS_BATCHNOFACVAL - facet without values; operation aborted; only in

Batch Mode;
• IQS_BATCHNOATTATTR - class attribute unknown; operation aborted; only in

Batch Mode;

INESC 2361 IQS Technical Reference Manual 56

• IQS_BATCHNOATTVAL - class attribute without values; operation aborted;
only in Batch Mode;

• IQS_SUCCESS - operation successful.

void iqsSAgetAoidsByValue (int attrtype,
 char FAR* attrname,
 char FAR *attrvalue,
 int condist)

Assisted Mode behaviour:
This function is called in the case of a Template1 to Template4 and Template8

query variants, after choosing one of the possible values of a generic attribute, facet or
class attribute from the appropriate interface list pane. iqsSAgetAoidsByValue
starts by updating iqsState.iqsQSV.distance with the value of the parameter
condist (which stands for conceptual distance) to be considered if attrtype means
that one is refining by facets. Then, iqsSAauxSelectAoidsByValue is invoked
with the attrvalue parameter, so that in iqsState.iqsQS (or possibly in
iqsState.iqsQSC) will only remain those objects having the value attrvalue for
the attribute or facet whose name is attrname. If the later task is successful,
attrname is joined to appropriate (depending on attrtype) set of previous chosen
names (this will prevent users from choosing later the same generic attribute, facet or
class attribute). Also, if attrname was the last item of his list, then the attrtype
refinement path is considered explored, becoming inaccessible. Once filtering of
iqsState.iqsQS (or iqsState.iqsQSC) has successfully occurred, the lists of
available generic attributes, facets, class attributes (and possibly software life cycles,
phases and characteristic relations) are cleaned, in order to enforce their update if, later,
one decides to make a refinement of the same kind. Finally iqsSAauxSetVBState
and iqsSAauxAddToQuery are called to update iqsState.iqsVBState and
iqsState.iqsQuery, respectively.

Batch Mode behaviour:
Except that updating the set of previous chosen items, cleaning the current lists,

checking if attrname was the last chosen (class)attribute or facet and calling
iqsSAauxSetVBState do not occur, the Assisted Mode description applies to the
Batch Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOAOIDGENVAL - no objects found with the generic attribute
attrname having the value attrvalue; operation aborted; only in Batch
Mode;

• IQS_BATCHNOAOIDFACVAL - no objects found with the facet attrname
having the value attrvalue; operation aborted; only in Batch Mode;

INESC 2361 IQS Technical Reference Manual 57

• IQS_BATCHNOAOIDATTVAL - no objects found with the class attribute
attrname having the value attrvalue; operation aborted; only in Batch
Mode;

• IQS_SUCCESS - operation successful.

void iqsSAgetAoidsBySlc (char FAR *slc)

Assisted Mode behaviour:
This function is Template2 specific. It is invoked after having chosen a software

life cycle from an appropriate interface list pane (whose contents are preserved in
iqsState.iqsSLCNames). iqsSAgetAoidsBySlc will invoke
iqsGetAoidsBySLC in order to filter the query solution, presently in
iqsState.iqsQS, leaving only the objects associated with the software life cycle
given by slc. Once filtering of iqsState.iqsQS has successfully occurred, the
refinement by software life cycle and phases is considered finished, becoming
inaccessible, and the lists of available generic attributes, facets and class attributes are
cleaned, in order to enforce their update if, later, one decides to make a refinement of
that kind. Also, iqsSAauxAddToQuery and iqsSAauxSetVBState are both
called to properly update iqsState.iqsQuery and iqsState.iqsVBState.

Batch Mode behaviour:
If none of the objects in iqsState.iqsQS is associated with slc or with any

other software life cycle, iqsSAgetAoidsBySlc will immediately return, ending the
batch solving of the present query. Except that cleaning the current lists of choosable
items and calling iqsSAauxSetVBState aren't both performed, the Assisted Mode
description applies to the Batch Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOSLC - no objects found associated with the software life slc;

operation aborted; only in Batch Mode;
• IQS_SUCCESS - operation successful;

void iqsSAgetSlcsAndAoidsByPha (char FAR *pha)

Assisted Mode behaviour:
This function is Template2 specific. It is invoked after having chosen a software

life cycle phase from an appropriate interface list pane (whose contents are preserved in
iqsState.iqsPHANames). iqsSAgetSlcsAndAoidsByPha will invoke
iqsGetSLCsByPHA in order to know every software life cycles containing the phase

INESC 2361 IQS Technical Reference Manual 58

pha. Then, for each one of these software life cycles, iqsGetAoidsBySLC is called
so that the current query solution (presently in iqsState.iqsQS) is filtered, keeping
only the objects associated with the software life cycles actually containing pha. If there
was a unique software life cycle containing the provided phase (pha), then both the
refinements by phases and software life cycles are considered finished, becoming
inaccessible. Otherwise, the phase pha is added to the set
iqsState.iqsPHANamesPrevious, so that no longer it will be possible to
specialize the query by that phase. Also, the lists of available generic attributes, facets,
class attributes, software life cycles and phases are cleaned, to enforce their update in
case later one decides to make a refinement (if possible) of that kind.
iqsSAauxAddToQuery and iqsSAauxSetVBState are both called to properly
update iqsState.iqsQuery and iqsState.iqsVBState.

Batch Mode behaviour:
If none of the objects in iqsState.iqsQS is associated with the phase pha or

with a known software life cycle, iqsSAgetSlcsAndAoidsByPha will
immediately return, ending the batch solving of the present query. Except that cleaning
the current lists of choosable items and calling iqsSAauxSetVBState aren't both
performed, the Assisted Mode description applies to the Batch Mode.

Return values (rIQS):
• IQS_PARAMERR -bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOPHA - no objects found associated with the software life phase
pha; operation aborted; only in Batch Mode;

• IQS_SUCCESS - operation successful;

void iqsSAafterIsCompoundPressed()

Assisted Mode behaviour:
This function is called only in the case of a Template3 query variant, immediately

after the IsCompound button has been pressed, making the AND IS COMPOUND
tokens to be joined to the query phrase. The flag iqsState.IsCompoundPressed
is then enabled and iqsState.iqsQS is filtered by iqsGetCompounds. This will
leave in iqsState.iqsQS only the compound objects from the primitive
iqsState.iqsQS content. Once this filtering has been successfully done, the lists of
available generic attributes, facets and class attributes are cleaned, in order to enforce
their update if, later, one decides to make a refinement of the same kind (this time over
compound objects). Finally iqsSAauxSetVBState and iqsSAauxAddToQuery
are called to update iqsState.iqsVBState and iqsState.iqsQuery,
respectively.

Batch Mode behaviour:
If none of the objects in iqsState.iqsQS is compound,

iqsSAafterIsCompoundPressed immediately returns, ending the batch solving

INESC 2361 IQS Technical Reference Manual 59

of the present query. The flag iqsState.IsCompoundPressed is left unchanged,
cleaning the current lists of choosable items doesn't take place and
iqsSAauxSetVBState is not called. The remain of the Assisted Mode description
applies to the Batch Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no compounds found; only in Assisted Mode;
• IQS_BATCHISCOMPOUNDNOCLAOS - no compounds were found; operation

aborted; only in Batch Mode;
• IQS_SUCCESS - operation successful;

void iqsSAgetAoidsByCaractRel(char FAR *crlname)

Assisted Mode behaviour:
This function is called during a Template3 or Template4 query variant, after

choosing, in the appropriate interface list pane, one of the available characteristic
relations (received in the crlname parameter). iqsSAgetAoidsByCaractRel will
call iqsGetClustersByCaractRel in order to obtain from iqsState.QS (or
iqsState.QSC, in the Template4 query variant) only the objects being clusters and
having the crlname characteristic relation. If this is successfully accomplished,
crlname is joined to set of previous chosen characteristic relations
(iqsState.iqsCRLNamesPrevious), preventing users from choosing later the
same characteristic. Also, if crlname was the last item of
iqsState.iqsCRLNames, then this refinement path is considered explored,
becoming inaccessible, and the lists of available generic attributes, facets and class
attributes are cleaned, in order to enforce their update if, later, one decides to make a
refinement of that kind. Finally iqsSAauxSetVBState and
iqsSAauxAddToQuery are called to update iqsState.iqsVBState and
iqsState.iqsQuery, respectively.

Batch Mode behaviour:
Except that updating, the set of previously chosen characteristic relations, cleaning

the current lists, checking if crlname was the last chosen characteristic relation and
calling iqsSAauxSetVBState do not occur, the Assisted Mode description applies
to the Batch Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOCRLS - no clusters found with the characteristic relation crl;
• IQS_SUCCESS - operation successful;

INESC 2361 IQS Technical Reference Manual 60

void iqsSAafterBelongToCompoundPressed()

Assisted Mode behaviour:
This function is called only in the case of a Template4 query variant and

immediately after the BelongToCompound button has been pressed, making the AND
BELONG TO COMPOUND tokens to be added to the query phrase. The flag
iqsState.BelongToCompoundPressed is enabled and a copy of
iqsState.iqsQS is made to iqsState.iqsQSC so that
iqsGetClaoByMember is invoked over it, leaving there the compound objects
containing the ones presently in iqsState.iqsQS. Once this has been done, the lists
of available generic attributes, facets and class attributes are cleaned, in order to enforce
their update if, later, one decides to make a refinement of the same kind (this time,
however, over the compound objects kept by iqsState.iqsQSC). Finally
iqsSAauxAddToQuery and iqsSAauxSetVBState are called to update
iqsState.iqsQuery and iqsState.iqsVBState, accordingly.

Batch Mode behaviour:
If none of the objects in iqsState.iqsQS is member of a compound,

iqsSAafterBelongToCompoundPressed immediately returns, ending the batch
solving of the present query. The flag iqsState.BelongToCompoundPressed is
left unchanged, cleaning the current lists of choosable items doesn't take place and
iqsSAauxSetVBState is not called. The remain of the Assisted Mode description
applies to the Batch Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or uknown error; operation aborted;
• IQS_NOTFOUND - no compounds found containing the present query solution;
only in Assisted Mode;
• IQS_BATCHBELONGTOCOMPOUNDNOCLAOS - no compounds were found
containing the present query solution; operation aborted; only in Batch Mode;
• IQS_SUCCESS - operation successful.

void iqsSAinitQuery(int template)

Assisted Mode behaviour:
This function is called every time one of the interface buttons #5 to #8 is pressed

(making one of the tokens of the format TEMPLATEx32 to be added to the query text).
iqsSAinitQuery will start the internal query phrase synthesis with the text
"#index TEMPLATEx ", where index is returned by
iqsGetNextGlobalHIndex, and x (depending on the template parameter),

32x varying from 5 to 8.

INESC 2361 IQS Technical Reference Manual 61

will assume a value between 5 and 8; iqsSAauxSetVBState will set the next
interface state.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function

behaves like in Assisted Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

void iqsSAgetAoidsFromQuery(int query)

Assisted Mode behaviour:
This function is called during a non-kernel query synthesis (Template5 to

Template8 variants). It starts by puting into iqsState.iqsQS the objects of a
previously solved query, whose History index is given by the query parameter (after
validated and converted from a local to a global reference on the History). In the case of
a Template5 and Template6 query variants, iqsSAgetAoidsFromQuery will filter
iqsState.iqsQS, by calling iqsGetSourcesAndLinks and
iqsGetSources, respectively, so that only source objects will remain there.
Additionally, the outgoing links are also retrieved in a Template5 query, allowing for the
iqsState.iqsLNKNames set to be initialized for later use.
iqsSAauxAddToQuery and iqsSAauxSetVBState are also called to update
iqsState.iqsQuery and iqsState.iqsVBState, accordingly.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function

behaves as in Assisted Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOSOURCES - no sources found; only in Assisted Mode;
• IQS_BATCHINDEXNOTVALID - unexpected index; operation aborted; only in
Batch Mode;
• IQS_BATCHNOSOURCES - no sources found; only in Batch Mode;
• IQS_SUCCESS - operation successful;

void iqsSAgetSourcesByLink(char FAR * link)

Assisted Mode behaviour:
This function is called both in Template5 and Template6 variants, after choosing a

link from an interface list pane, whose contents are preserved by

INESC 2361 IQS Technical Reference Manual 62

iqsState.iqsLNKNames. It intends to leave in iqsState.iqsQS only the
objects being sources of the specified link. Therefore, for each source in
iqsState.iqsQS, the list of his links is searched for the presence of link (the set
of these lists of links is kept by iqsState.iqsListList1, initialized during
iqsSAgetAoidsFromQuery for the Template5 queries and initialized during
iqsSAgetSourcesAndLinksBySinks for the Template6 queries). If the link is
found there, then the current object is assumed to be a source for that link.
iqsSAauxAddToQuery and iqsSAauxSetVBState are also called to update
iqsState.iqsQuery and iqsState.iqsVBState, accordingly.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function acts as

in Assisted Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHNOLINK - no source found for link; operation aborted; only in
Batch Mode;
• IQS_SUCCESS - operation successful.

void iqsSAgetSourcesByLinkAndSinks(char FAR * link,
 int query)

This function is Template5 specific and it is invoked after choosing (for the second
time during the query synthesis), a History query, of index query (which is validated
and converted from a local to a global reference). The objects associated with this
previously solved query are submited, with iqsState.iqsQS and link, to
iqsGetSourcesByLinkAndSinks, so that every object in iqsState.iqsQS is
checked to see if it is a source of the relation link, to at least one sink in the set of
objects of the History query. Only the sources obtained that way will remain in
iqsState.iqsQS. iqsSAauxAddToQuery and iqsSAauxSetVBState are
also called to update iqsState.iqsQuery and iqsState.iqsVBState,
accordingly.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function acts as

in Assisted Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOSINKS - no sinks were found in the History query for the link
outgoing from iqsState.iqsQS; operation aborted; only in Assisted Mode;

INESC 2361 IQS Technical Reference Manual 63

• IQS_BATCHNOSINKS - no sinks were found in the History query for the
link outgoing from iqsState.iqsQS; operation aborted; only in Batch
Mode;
• IQS_BATCHINDEXNOTVALID - unexpected index; operation aborted; only in
Batch Mode;
• IQS_SUCCESS - operation successful;

void iqsSAgetSourcesAndLinksBySinks(int query)

iqsSAgetSourcesAndLinksBySinks is Template6 specific and it is
invoked after choosing a History query (for the second time during the query synthesis),
of index query (which is validated and converted from a local to a global reference).
Both the objects currently in iqsState.iqsQS and the ones associated with this
History query, plus the iqsState.iqsListList, are submited to
iqsGetSourcesAndLinksBySinks, so that in iqsState.iqsQS will only
remain the sources of at least one link to at least one sink in the History query
(iqsState.iqsListList will have, in turn, a specific list of outgoing links for each
source found). If this filtering ends successfully, iqsMakeSet will be called to initialize
iqsState.iqsLNKNames based on the contents of
iqsState.iqsListList.iqsSAauxAddToQuery and
iqsSAauxSetVBState are called to update iqsState.iqsQuery and
iqsState.iqsVBState, accordingly.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function acts as

in Assisted Mode.

Return values (rIQS):
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOSOURCE - no links found between iqsState.iqsQS and the History
query; operation aborted; only in Assisted Mode;
• IQS_BATCHNOSOURCE - no links found between iqsState.iqsQS and the
History query; operation aborted; only in Batch Mode;
• IQS_BATCHINDEXNOTVALID - unexpected index; operation aborted; only in
Batch Mode;
• IQS_SUCCESS - operation successful;

void iqsSAqueryUnion(int query2)

This function is Template7 specific and it is invoked after choosing a History query
(for the second time during the query synthesis), of index query2 (which is validated
and converted from a local to a global reference). The objects associated with this
query2 are joined, via iqsSetUnion, with the ones presently in

INESC 2361 IQS Technical Reference Manual 64

iqsState.iqsQS. iqsSAauxAddToQuery and iqsSAauxSetVBState are
also called to update iqsState.iqsQuery and iqsState.iqsVBState,
accordingly.

Batch Mode behaviour:
Except that iqsSAauxSetVBState is not called, the rest of the function acts as

in Assisted Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_BATCHINDEXNOTVALID - unexpected index; operation aborted; only in
Batch Mode;
• IQS_SUCCESS - operation successful.

6.1 The IQS Semantic Actions Auxiliary API

void iqsSAauxSetVBState(bool b1, ..., bool b25)

This procedure receives the logical values (enable/disable) that
iqsState.iqsVBState structure fields must assume in order to reflect the state of
the query synthesis. Recall to section 4.2.2 for a brief description of those fields.
iqsSAauxSetVBState is specific to Assisted Mode.

int iqsSAauxAddToQuery(char FAR *string)

This function is responsible for appending the string parameter (a set of
syntactically and semantically valid tokens), to the query phrase,
iqsState.iqsQuery, presently under construction.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY - cleans iqsState.iqsQuery.

int iqsSAauxAddQueryToHistory()

The operation of adding a solved query to the History is performed after a
successful query resolution. iqsSAauxAddQueryToHistory first adds the query

INESC 2361 IQS Technical Reference Manual 65

text, presently in iqsState.iqsQuery, and then the respective objects, in
iqsState.iqsQS.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_SUCCESS - operation successful.

int iqsSAauxInitAttrLists()

This function is called by iqsSAafterAttrTypeChoice every time a
refinement by generic attributes, facets, class attributes, software life cycles, phases or
characteristic relations is initiated by pressing the respective interface button. The goal is
to initialize or update the iqsState fields iqsState.iqsAOGAttribs (through
iqsGetAOGAttribs), iqsState.iqsFACAttribs (through iqsGetFacets),
iqsState.iqsCLAAttribs (through iqsGetClassAttributes),
iqsState.iqsSLCNames (through iqsGetSLCs), iqsState.iqsPHANames
(through iqsGetPHAs) and iqsState.iqsCRLNames (through
iqsGetCaractRel) only with the semantically valid tokens in the context of the
current query solution, that is, only the generic attributes, facets, etc, defined by the
objects in iqsState.iqsQS will be of interest and become available to the user. Also,
in each case, the respective set of previously chosen tokens is removed from the one here
obtained, in order to prevent the users to re-enter old (and so redundant) refinement
paths. iqsSAauxInitAttrLists is specific to Assisted Mode.

Return values (rIQS):
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_NOTFOUND - no generic attributes, facets, class attributes, software life
cycles, phases or characteristic relations available;
• IQS_SUCCESS - operation successful.

int iqsSAauxSelectAoidsByValue(char FAR *value)

iqsSAauxSelectAoidsByValue is called by iqsSAgetAoidsByValue
to project iqsState.iqsQSV over iqsState.iqsQS (iqsState.iqsQSC in
the case of a Template4 query variant). That is, only the objects whose values in
iqsState.iqsQSV are equal to value shall remain in iqsState.iqsQS (or
iqsState.iqsQSC in the case of Template4). However, if
iqsState.iqsQSV.distance is greater than -1, this means that
iqsState.iqsQSV is a set of facets values and so, the conceptual distance field,
iqsState.iqsQSV.distance, should be considered during iqsState.iqsQS
filtering, that is, only the objects whose facets values in iqsState.iqsQSV have a
conceptual distance, from the parameter value, of at least

INESC 2361 IQS Technical Reference Manual 66

iqsState.iqsQSV.distance, will remain in iqsState.iqsQS (or
iqsState.iqsQSC in the case of Template4). This special case is handled by calling
the ctsSearchArc function.

Note that if value is an empty string, iqsState.iqsQSV.distance will be
ignored, and a simple projection takes place.

If value is not an empty string and iqsState.iqsQSV.distance is greater
than -1, then ctsSearchArc will not be called every time the value retrieved from
from iqsState.iqsQSV.info is an empty string.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - unknown value (not found in
iqsState.iqsQSV.info); operation aborted;
• IQS_SUCCESS - operation successful.

Secondary effects:
• IQS_NOMEMORY, IQS_ERROR, IQS_NOTFOUND - cleans
iqsState.iqsQS (iqsState.iqsQSC);

7 The IQS Visual Basic related API

The next state of the Visual Basic interface layer is kept at
iqsState.iqsVBstate. Aditionaly, the contents of some list-pannes are also
maintained by some specific fields of the iqsState global variable33. These structures
are updated, in a deterministic way, every time a semantic actions is executed. In order
to let the Visual Basic interface layer to reflect the contents of these variables, a set of
exportable functions, allowing for the retrieval of that information, must be provided.
Also, functions to reset the iqsState fields when starting (or during or terminating) an
IQS session, are needed. Finaly, a way must be provided to invoke the IQL Parser, with
the query (or batch of querys) text.

The following functions take care of the previous subjects; they can be found at
iqs.c file.

int WINAPI __export VBiqsResetParser(int mode)

Depending on the mode parameter, the VBiqsResetParser function will
initialize (or deallocate) some specific iqsState fields, namely some sets of names and
values, flags, the iqsVBstate structure, etc37.

33recall 4.2 The ParserState data type. The History is handled separately because there are
circumstances in which VBiqsResetParser is called but the History must be left intact.

INESC 2361 IQS Technical Reference Manual 67

mode possible values:
• IQS_START, IQS_STARTBATCH - immediatly after entering an IQS session

or changing the IQS operation mode;
• IQS_NEXT - immediatly before a query synthesis (in Aided Mode) or

immediatly before processing the next query of a batch (in Batch Mode);
• IQS_END - immediatly before leaving an IQS session or changing the IQS

operation mode;

Return values:
• IQS_SUCCESS - operation (always) successful.

int WINAPI __export VBiqsInitHistory()

This function exclusively initializes the iqsState.iqsQueryHistory field.

Return values:
• IQS_SUCCESS - operation (always) successful.

int WINAPI __export VBiqsClearHistory()

VBiqsClearHistory will call iqsCleanSet in order to deallocate and
reinitialize the History structure, iqsState.iqsQueryHistory.
iqsSAauxSetVBState is also called so that the Template buttons (in the Assisted
Mode) and the History and Display menus (in both operation Modes) reflect the empty
state of the History structure.

Return values:
• IQS_SUCCESS - operation (always) successful.

int WINAPI __export VBiqsSaveHistory(LPSTR VBfile)

This function will save, at the file specified by VBfile, the text of the querys kept
by the History.

Return values:
• IQS_BATCHIOERROR - open error or write error over VBfile file;
• IQS_SUCCESS - operation successful.

int WINAPI __export VBiqsGetVBState(VBState *state)

INESC 2361 IQS Technical Reference Manual 68

This function will make a copy, field by field, of the iqsState.iqsVBState
structure into the state parameter. The state parameter should be a pointer to a
Visual Basic structure of the type VBiqsState. VBiqsGetVBState allows the
information concerning the enable/disable state of the interface buttons and list panes to
access to the Visual Basic layer.

Return values:
• IQS_SUCCESS - operation (always) successful.

int WINAPI __export VBiqsGetQuery(HLSTR query)

VBiqsGetQuery will call VBSetHlstr so that a copy of
iqsState.iqsQuery is made to query. This is how a copy of the query, as
synthesised by the semantic actions, can access the Visual Basic layer.

Return values:
• IQS_SUCCESS - operation (always) successful.

int WINAPI __export VBiqsGetNameFromNameList(
 HLSTR VBname, int namelist, int mode)

This function will return, on successive calls (first call with mode=IQS_START
and the following ones with mode=IQS_NEXT), all the names contained in the set of
names coded in the namelist integer parameter. VBiqsGetNameFromNameList
will call VBSetHlstr to make VBname a copy of the present name of the list of names
being scanned. By invoking VBiqsGetNameFromNameList until receiving
IQS_NOTFOUND, the Visual Basic layer expects to receive the contents, one by one, of
a list of names (most of the times, to be displayed at an interface list pane). The
parameter namelist is checked only if mode=IQS_START.

namelist possible values:
• IQS_AOGNAMELIST - iqsState.iqsAOGAttribs will be scanned;
• IQS_FACNAMELIST - iqsState.iqsFACAttribs will be scanned;
• IQS_CLANAMELIST - iqsState.iqsCLAAttribs will be scanned;
• IQS_SLCNAMELIST - iqsState.iqsSLCNames will be scanned;
• IQS_PHANAMELIST - iqsState.iqsPHANames will be scanned;
• IQS_CRLNAMELIST - iqsState.iqsCRLNames will be scanned;
• IQS_LNKNAMELIST - iqsState.iqsLNKNames will be scanned.

mode possible values:
• IQS_START - get the first name;
• IQS_NEXT - get the next name.

INESC 2361 IQS Technical Reference Manual 69

Return values:
• IQS_NOTFOUND - no (more) names available at the list of names specified by
namelist;

• IQS_SUCCESS - operation successful.

int WINAPI __export VBiqsGetValuesFromQSV(
 HLSTR VBvalue, int mode)

VBiqsGetValuesFromQSV will return, on successive calls (first call with
mode=IQS_START and the following ones with mode=IQS_NEXT), all the values
contained in the iqsState.iqsQSV. VBiqsGetValuesFromQSV will call
VBSetHlstr to make VBvalue a copy of the present value retrieved from the
iqsState.iqsQSV list. By invoking VBiqsGetValuesFromQSV until receiving
IQS_NOTFOUND, the Visual Basic layer expects to receive the contents of
iqsState.iqsQSV, one by one and without redundant or empty values.

mode possible values:
• IQS_START - get the first iqsState.iqsQSV value;
• IQS_NEXT - get the next iqsState.iqsQSV value.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_NOTFOUND - no (more) values available at iqsState.iqsQSV;
• IQS_SUCCESS - operation successful.

int WINAPI __export VBiqsGetHistory(HLSTR VBquery,
 int mode)

This function will return, on successive calls (first call with mode=IQS_START
and the following ones with mode=IQS_NEXT), the text of all the queries contained at
the History. VBiqsGetHistory will call VBSetHlstr to make VBquery a copy of
the present query text retrieved from iqsState.iqsQueryHistory.

mode possible values:
• IQS_START - get the text of the first query kept by the History

(iqsState.iqsQueryHistory.querys[0].querytext);
• IQS_NEXT - get the text of the next query of the History.

Return values:
• IQS_NOTFOUND - no (more) queries available at
iqsState.iqsQueryHistory;

• IQS_SUCCESS - operation successful.

INESC 2361 IQS Technical Reference Manual 70

int WINAPI __export VBiqsGetAoidsFromHistory(
 int query);

VBiqsGetAoidsFromHistory will make iqsState.iqsQS a copy of the
AOIDs of the queryth query of the History. That copy will be mostly used by some
Result Manager facilities.

Return values:
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_INDEXNOTVALID - invalid index; operation aborted
• IQS_SUCCESS - operation successful.

int WINAPI __export VBiqsGetResult(
 LPAOENTRYGEN aoGen,int mode)

This function will return, on successive calls (first call with mode=IQS_START
and the following ones with mode=IQS_NEXT), some of the genneric information (via
aoGen) of every AOID of iqsState.iqsQS. This data will be depicted in a table,
just after having pressed the CHECK button (during the query synthesis), in Aided Mode.

mode possible values:
• IQS_START - gets the generic data for the first AOID in iqsState.iqsQS;
• IQS_NEXT - gets the generic data for the next AOID in iqsState.iqsQS;

Return values:
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_NOTFOUND - no (more) objects available at iqsState.iqsQS;
• IQS_SUCCESS - operation successful.

int WINAPI __export VBiqsShowFAC(void)
int WINAPI __export VBiqsShowLNK(void)
int WINAPI __export VBiqsShowMBR(void)

These three functions are in charged of initializing the Result Manager appropriate
data structures in order to display facets, links or members related information,
concerning the objects kept in iqsState.iqsRM. These objects are a copy of
iqsState.iqsQS (or iqsState.iqsQSC), which has the temporary or final
solution of the query being made, or from a specific query of the History.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_SUCCESS - operation successful.

INESC 2361 IQS Technical Reference Manual 71

int WINAPI __export VBiqsParser(LPSTR VBstring)

In Assisted Mode, the Visual Basic layer will call VBiqsParser whenever it
wants the query phrase VBstring to be recognized and solved. VBiqsParser will,
in turn, call yyparse with a local copy of VBstring.

Return values:
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_PARSERROR - parser internal error; operation aborted;
• every other possible integer code returnable in Assisted Mode

int WINAPI __export VBiqsBatchParser(LPSTR VBfile)

In Batch Mode, the Visual Basic layer will call VBiqsBatchParser whenever
it wants a batch of queries to be solved. This set of query phrases is presumed to be kept
in a file whose path name is given by the VBfile parameter. After the file has been
loaded into memory, and iqsSetNextLocalHIndex has been called with 0 (zero)
(in order to start a new local context of references on History), VBiqsBatchParser
will invoke yyparse with the batch (in memory) to be solved. During this process,
every time a query is successfully terminated, iqsSAcheck is called in order to refresh
a log file, logfile.iqs, with the contents of iqsState.iqsQS and the suffix
SUCCESS. However, if an error occurs during the parsing process or inside a semantic
action, the remaining queries of the batch are ignored (not solved). In this case, the log
file will contain only the text of the queries successfully solved (and the respective suffix,
SUCCESS) as well as the part of the query text managed to be solved just before the
error took place (this late text and a suffix indicating the error is provided by
VBiqsBatchParser as soon as yyparse returns).

Return values (appearing also as suffix tokens):
• IQS_PARSERROR - parser internal error; operation aborted;
• IQS_NOMEMORY - not enough memory; operation aborted;
• IQS_PARAMERR - bad parameters; operation aborted;
• IQS_ERROR - internal or unknown error; operation aborted;
• IQS_BATCHIOERROR - I/O error over logfile.iqs or VBfile;

operation aborted;
• IQS_BATCHNOMEMORY- not enough memory to load VBfile; operation

aborted;
• IQS_BATCHNOOBJS - no objects available for the specified class; operation

aborted;
• IQS_BATCHNOGENATTR - unknown generic attribute; operation aborted;
• IQS_BATCHNOFACATTR - unknown facet; operation aborted;
• IQS_BATCHNOATTATTR - unknown class attribute; operation aborted;
• IQS_BATCHNOGENVAL - no values found for the specified generic attribute;

operation aborted;

INESC 2361 IQS Technical Reference Manual 72

• IQS_BATCHNOFACVAL - no values found for the specified facet; operation
aborted;

• IQS_BATCHNOATTVAL - no values found for the specified class attribute;
operation aborted;

• IQS_BATCHNOAOIDGENVAL - no objects found with the specified generic
attribute; operation aborted;

• IQS_BATCHNOAOIDFACVAL - no objects found with the specified facet;
operation aborted;

• IQS_BATCHNOAOIDATTVAL - no objects found with the specified class
attribute; operation aborted;

• IQS_BATCHNOSLC - no objects found with the specified software life cycle;
operation aborted;

• IQS_BATCHNOPHA - no objects found with the specified software life cycle
phase; operation aborted;

• IQS_BATCHISCOMPOUNDNOCLAOS - no compounds available in the previous
selected objects; operation aborted;

• IQS_BATCHNOCRLS - no objects found with the specified characteristic
relation; operation aborted;

• IQS_BATCHBELONGTOCOMPOUNDNOCLAOS - no compounds found
containing the previous selected objects; operation aborted;

• IQS_BATCHINDEXNOTVALID - invalid History index; operation aborted;
• IQS_BATCHNOSOURCES - no sources available in the previous selected

objects; operation aborted;
• IQS_BATCHNOLINK - no source available for the specified link, in the

previous selected object; operation aborted;
• IQS_BATCHNOSINKS - no sinks available for the specified link, in the last

selected objects; operation aborted;
• IQS_BATCHNOSOURCE - no source for the specified sinks, in the previous

selected sources; operation aborted;
• IQS_SUCCESS - operation successful.

8 IQS module cross reference

This chapter shows the global cross reference for all of the functions of the IQS

module. The IQS module functions make internal calls34 as well as external calls to the
ERA, CON, RM and CTS modules. Thus, the provided description will be based on a field
for the name of the caller IQS function and, whenever necessary, specific fields for the
called functions on other modules.

This cross reference distinguishes between functions implemented in the iqs.c and
actions.c files. For each file, the functions are gathered in groups reflecting their main
functionalities.

8.1 Cross reference for the iqs.c file

34that is, they also call functions of their own module

INESC 2361 IQS Technical Reference Manual 73

8.1.1 IQS API Auxiliary functions

IQS function IQS calls

iqsFrealloc

iqsStrtok

iqsCheckWordInList iqsStrtok

iqsGetAttrValue iqsCheckWordInList

8.1.2 Set API functions

IQS function IQS calls

iqsCleanSet iqsCleanSet

iqsCopySet iqsCleanSet

iqsSetDifference iqsCopySet

iqsCleanSet

iqsCheckWordInList

iqsSetIntersection iqsCopySet

iqsSetDifference

iqsCleanSet

iqsSetUnion iqsCopySet

iqsCleanSet

iqsFrealloc

iqsMakeSet

iqsMakeSet iqsCleanSet

iqsFrealloc

iqsCheckWordInList

iqsMakeSet

iqsCopySet

8.1.3 IQS API functions

IQS function IQS calls ERA calls CON calls

iqsGetHierarchyAoids iqsCleanSet eraGetObj

iqsFrealloc

iqsGetAttrValue

iqsCopySet

iqsSetDifference

iqsGetAOGAttribs iqsCleanSet eraGetObj

iqsCheckWordInList

iqsSetDifference

iqsGetAttrValue

iqsFrealloc

iqsGetAOGValues iqsCleanSet eraGetObj

iqsGetAttrValue

iqsFrealloc

iqsGetFacets iqsCleanSet eraGetObj

iqsFrealloc

iqsCheckWordInList

iqsGetAttrValue

iqsSetDifference

iqsGetFacetsValues iqsCleanSet eraGetObj

INESC 2361 IQS Technical Reference Manual 74

iqsGetAttrValue

iqsFrealloc

iqsGetClassAttributes iqsCleanSet eraGetObj

iqsGetAttrValue

iqsCheckWordInList

iqsSetUnion

iqsGetAttribsValues iqsCleanSet eraGetObj

iqsGetAttrValue

iqsFrealloc

iqsGetSLCs iqsCleanSet eraGetObj

iqsGetAttrValue

iqsCopySet

iqsMakeSet

iqsGetPHAs iqsCleanSet

iqsGetSLCs

iqsCheckWordInList

iqsGetPHAsBySLC

iqsSetUnion

iqsMakeSet

iqsGetPHAsBySLC iqsCleanSet conGetSLCPHA

iqsFrealloc

iqsGetAoidsBySLC iqsCleanSet eraGetObj

iqsGetAttrValue

iqsCopySet

iqsGetSLCsByPHA iqsCleanSet

iqsCheckWordInList

iqsGetPHAsBySLC

iqsCopySet

iqsGetCompounds iqsCleanSet conGetMbr

iqsCopySet

Note: iqsGetHierarchyAoids calls also VCsrvGetClasses at the SRV module.
iqsGetCaractRel iqsCleanSet conGetMbrLnk

iqsFrealloc conGetLnk

iqsSetUnion

iqsGetClustersByCaractRel iqsCleanSet conGetMbrLnk

iqsFrealloc conGetLnk

iqsSetUnion

iqsCopySet

iqsGetClaoByMember iqsCleanSet conGetMbr

iqsFrealloc

iqsMakeSet

iqsGetMemberByClao iqsCleanSet conGetMbr

iqsFrealloc

iqsMakeSet

iqsGetSources iqsCleanSet conGetLnk

iqsCopySet

iqsGetSourcesAndLinks iqsCleanSet conGetLnk

iqsFrealloct

iqsCopySet

iqsGetSourcesByLinkAndSinks iqsCleanSet conGetLnk

iqsCopySet

iqsGetSourcesAndLinksBySinks iqsCleanSet conGetLnk

iqsFrealloc

INESC 2361 IQS Technical Reference Manual 75

iqsCopySet

8.1.4 IQS Visual Basic related API functions

IQS function IQS calls RM calls

VBiqsResetParser iqsSAauxSetVBState

iqsCleanSet

VBiqsInitHistory

VBiqsClearHistory iqsCleanSet

iqsSAauxSetVBState

VBiqsSaveHistory

VbiqsGetVBState

VbiqsGetQuery

VbiqsGetNameFromNameList iqsCheckWordInList

VbiqsGetValuesFromQSV iqsMakeSet

iqsSetDifference

iqsCleanSet

iqsCheckWordInList

VBiqsGetHistory

VBiqsGetAoidsFromHistory iqsCopySet

VBiqsGetResult

VBiqsShowFAC iqsCopySet rmReset

iqsGetMemberByClao rmAddVertex

iqsSetIntersection rmAddArc

VBiqsShowLNK iqsCopySet rmReset

iqsGetMemberByClao rmAddVertex

iqsSetIntersection rmAddArc

VBiqsShowMBR iqsCopySet rmReset

iqsGetMemberByClao rmAddVertex

iqsSetIntersection rmAddArc

VBiqsParser

VBiqsBatchParser iqsSAauxSetVBState

8.2 Cross reference for the actions.c file

8.2.1 IQS Semantic Actions Auxiliary API functions

IQS function IQS calls CTS calls

iqsSAauxSetVBState

iqsSAauxAddToQuery iqsFrealloc

iqsSAauxAddQueryToHistory iqsFrealloc

iqsCopySet

iqsSAauxInitAttrLists iqsGetAOGAttribs

iqsSetDifference

iqsGetFacets

iqsGetClassAttributes

iqsMakeSet

iqsGetSLCs

iqsGetPHAs

iqsGetCaractRel

iqsSAauxSelectAoidsByValue iqsCheckWordInList ctsSearchArc

INESC 2361 IQS Technical Reference Manual 76

iqsSetUnion

iqsCleanSet

iqsCopySet

8.2.2 IQS Semantic Actions API functions

IQS function IQS calls

iqsSAcheck iqsSAauxAddQueryToHistory

iqsGetMemberByClao

iqsSetIntersection

VBiqsResetParser

iqsSAabort VBiqsResetParser

batchIqsSAcheckIndex

iqsSAinitGetAllClass iqsSAauxAddToQuery

iqsSAauxSetVBState

iqsSAgetAoidsBellowClass iqsGetHierarchyAoids

iqsSAauxInitAttrLists

iqsSAauxAddToQuery

iqsSAauxSetVBState

iqsSAafterAttrTypeChoice iqsSAauxInitAttrLists

iqsSAauxSetVBState

iqsSAgetAttrValues iqsCleanSet

iqsGetAOGValues

iqsGetFacetsValues

iqsGetAttribsValues

iqsSAauxSetVBState

iqsSAgetAoidsByValue iqsSAauxSelectAoidsByValue

iqsSetUnion

iqsSetDifference

iqsCleanSet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAgetAoidsBySlc iqsGetAoidsBySLC

iqsSAauxAddToQuery

iqsCleanSet

iqsSAauxSetVBState

iqsSAgetSlcsAndAoidsByPha iqsGetSLCs

iqsGetSLCsByPHA

iqsCheckWordInList

iqsClopySet

iqsGetAoidsBySLC

iqsSetUnion

iqsMakeSet

iqsSAauxAddToQuery

iqsSAauxSetVBState

iqsCleanSet

iqsSAafterIsCompoundPressed iqsCopySet

iqsGetCompounds

iqsSAauxSetVBState

iqsCleanSet

iqsSAauxAddToQuery

iqsSAgetAoidsByCaractRel iqsGetClustersByCaractRel

iqsSetUnion

INESC 2361 IQS Technical Reference Manual 77

iqsSetDifference

iqsCleanSet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAafterBelongToCompoundPressed iqsCopySet

iqsGetClaoByMember

iqsCleanSet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAinitQuery iqsSAauxAddToQuery

iqsSAauxSetVBState

iqsSAgetAoidsFromQuery iqsCopySet

iqsGetSourcesAndLinks

iqsMakeSet

iqsSAauxSetVBState

iqsGetSources

iqsSAauxAddToQuery

iqsSAgetSourcesByLink iqsCheckWordInList

iqsSetUnion

iqsCleanSet

iqsCopySet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAgetSourcesByLinkAndSinks iqsCopySet

iqsGetSourcesByLinkAndSinks

iqsCleanSet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAgetSourcesAndLinksBySinks iqsCopySet

iqsGetSourcesAndLinksBySinks

iqsCleanSet

iqsMakeSet

iqsSAauxSetVBState

iqsSAauxAddToQuery

iqsSAqueryUnion iqsSetUnion

iqsSAauxAddToQuery

iqsSAauxSetVBState

INESC 2361 IQS Technical Reference Manual 78

References

[IQS-2.1] "Intelligent Query System - Functional Specification & Architecture",
Version: 2, Revision: 1.

[GF93] "Como redireccionar o input de um reconhecedor baseado em lex e yacc
para uma zona de memória", Geraldina Fernandes - Universidade do Minho,1993

[CM-1.4 1993] Comparator & Modifier. Functional Specification & Architecture.
Version: 1; Revision: 4; Workpackage WP2B of Collaboration Offer by INESC.

